1.福建师范大学 物理与能源学院, 福建 福州 350000
[ "林继栋(1996—),男,福建宁德人,博士研究生,2019年于景德镇陶瓷大学获得学士学位,主要从事钙钛矿量子点玻璃的研究。E-mail:j.d.lin@foxmail.com" ]
[ "陈大钦(1978—),男,福建福州人,博士,教授,2008年于中国科学院福建物质结构研究所获得博士学位,主要从事稀土发光材料和量子点发光材料的研究。E-mail:dqchen@fjnu.edu.cn" ]
扫 描 看 全 文
林继栋, 陈大钦. 钙钛矿量子点玻璃背光应用[J]. 液晶与显示, 2023,38(3):342-355.
LIN Ji-dong, CHEN Da-qin. Application of perovskite quantum dot glass backlight[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(3):342-355.
林继栋, 陈大钦. 钙钛矿量子点玻璃背光应用[J]. 液晶与显示, 2023,38(3):342-355. DOI: 10.37188/CJLCD.2022-0223.
LIN Ji-dong, CHEN Da-qin. Application of perovskite quantum dot glass backlight[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(3):342-355. DOI: 10.37188/CJLCD.2022-0223.
随着人们生活水平和社会经济的提升,对具有优良显色性和色彩再现力的液晶显示器的需求急剧增加。然而,商业使用的传统稀土掺杂的荧光粉转光层由于发射半峰宽太宽已经无法满足宽色域显示的需求,因此迫切需要开发一种新材料以实现宽色域显示。钙钛矿量子点玻璃因其优异的光学性能与卓越的稳定性被认为是背光显示器中传统荧光粉转光层的理想替代品,在显示行业具有广泛的应用前景。本文综述了钙钛矿量子点玻璃背光结构的应用方式,并对近年来钙钛矿量子点玻璃在背光应用的研究现状与发展中所面临的挑战进行了概括,最后对其进行了展望。
With the improvement of people's living standards and social economy, the demand for the liquid crystal display with excellent color rendering and color reproduction has increased dramatically. However, the commercial use of the traditional rare-earth doped phosphor color converters can no longer meet the needs of wide color gamut display due to the wide emission full width at half maximum. Therefore, it is urgent to develop a new material to realize a wide color gamut display. Perovskite quantum dot glass is considered an ideal replacement for traditional phosphor transitions in backlit displays due to its excellent optical properties and superior stability, and has a wide range of applications in the display industry. This paper provides an overview of how perovskite quantum dot glass backlight structures can be applied and gives an overview of the current state of research and the challenges faced in developing perovskite quantum dot glass for backlight applications in recent years, and finally gives an outlook on it.
色彩再现力液晶显示器钙钛矿量子点玻璃稳定性
color reproductionliquid crystal displayperovskite quantum dot glassstability
徐梦层,李昌禄,雷志春.宽色域液晶显示系统的研究[J].液晶与显示,2018,33(7):606-614. doi: 10.3788/yjyxs20183307.0606http://dx.doi.org/10.3788/yjyxs20183307.0606
XU M C, LI C L, LEI Z C. Wide color gamut liquid crystal display system [J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(7): 606-614. (in Chinese). doi: 10.3788/yjyxs20183307.0606http://dx.doi.org/10.3788/yjyxs20183307.0606
REHÁK R, BODROGI P, SCHANDA J. On the use of the sRGB Colour Space [J]. Displays, 1999, 20(4): 165-170. doi: 10.1016/s0141-9382(99)00019-0http://dx.doi.org/10.1016/s0141-9382(99)00019-0
SMITH A R. Color gamut transform pairs [J]. ACM SIGGRAPH Computer Graphics, 1978, 12(3): 12-19. doi: 10.1145/965139.807361http://dx.doi.org/10.1145/965139.807361
SMPTE. SMPTE RP 431-2 D-cinema quality-reference projector and environment [S]. SMPTE, 2007.
ITU. BT.2020-1 Parameter values for ultra-high definition television systems for production and international programme exchange [S]. ITU, 2014.
ZHANG R, LIN H, YU Y L, et al. A new-generation color converter for high-power white LED: transparent Ce3+∶YAG phosphor-in-glass [J]. Laser & Photonics Reviews, 2014, 8(1): 158-164. doi: 10.1002/lpor.201300140http://dx.doi.org/10.1002/lpor.201300140
LI S X, WANG L, TANG D M, et al. Achieving high quantum efficiency narrow-band β-sialon∶Eu2+ phosphors for high-brightness LCD backlights by reducing the Eu3+ luminescence killer [J]. Chemistry of Materials, 2018, 30(2): 494-505. doi: 10.1021/acs.chemmater.7b04605http://dx.doi.org/10.1021/acs.chemmater.7b04605
XU F C, YANG H S, ZHANG Y J, et al. β-Sialon∶Eu2+ phosphor-in-glass: an efficient and potential green color conversion material for laser lighting systems [J]. Journal of Alloys and Compounds, 2021, 887: 161301. doi: 10.1016/j.jallcom.2021.161301http://dx.doi.org/10.1016/j.jallcom.2021.161301
GAUTIER R, LI X Y, XIA Z G, et al. Two-step design of a single-doped white phosphor with high color rendering [J]. Journal of the American Chemical Society, 2017, 139(4): 1436-1439. doi: 10.1021/jacs.6b12597http://dx.doi.org/10.1021/jacs.6b12597
BOURZAC K. Quantum dots go on display [J]. Nature, 2013, 493(7432): 283. doi: 10.1038/493283ahttp://dx.doi.org/10.1038/493283a
ZHANG L, LIU C M, WANG L R, et al. Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9 [J]. Angewandte Chemie International Edition, 2018, 57(35): 11213-11217. doi: 10.1002/anie.201804310http://dx.doi.org/10.1002/anie.201804310
YANG Z W, GAO M Y, WU W J, et al. Recent advances in quantum dot-based light-emitting devices: challenges and possible solutions [J]. Materials Today, 2019, 24: 69-93. doi: 10.1016/j.mattod.2018.09.002http://dx.doi.org/10.1016/j.mattod.2018.09.002
JANG E, JUN S, JANG H, et al. White-light-emitting diodes with quantum dot color converters for display backlights [J]. Advanced Materials, 2010, 22(28): 3076-3080. doi: 10.1002/adma.201000525http://dx.doi.org/10.1002/adma.201000525
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Letters, 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779http://dx.doi.org/10.1021/nl5048779
TRIANA M A, HSIANG E L, ZHANG C C, et al. Luminescent nanomaterials for energy-efficient display and healthcare [J]. ACS Energy Letters, 2022, 7(3): 1001-1020. doi: 10.1021/acsenergylett.1c02745http://dx.doi.org/10.1021/acsenergylett.1c02745
LIU H W, LIU Z Y, XU W Z, et al. Engineering the photoluminescence of CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals across the full visible spectra with the interval of 1 nm [J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14256-14265. doi: 10.1021/acsami.9b01930http://dx.doi.org/10.1021/acsami.9b01930
ZHU X X, BIAN L H, FU H, et al. Broadband perovskite quantum dot spectrometer beyond human visual resolution [J]. Light: Science & Applications, 2020, 9: 73. doi: 10.1038/s41377-020-0301-4http://dx.doi.org/10.1038/s41377-020-0301-4
CHEN D Q, CHEN X. Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications [J]. Journal of Materials Chemistry C, 2019, 7(6): 1413-1446. doi: 10.1039/c8tc05545ahttp://dx.doi.org/10.1039/c8tc05545a
ZHANG F, SHI Z F, MA Z Z, et al. Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices [J]. Nanoscale, 2018, 10(43): 20131-20139. doi: 10.1039/c8nr07022ahttp://dx.doi.org/10.1039/c8nr07022a
TANG X S, YANG J, LI S Q, et al. Single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties [J]. Advanced Science, 2019, 6(18): 1900412. doi: 10.1002/advs.201900412http://dx.doi.org/10.1002/advs.201900412
ZHANG F J, CAI B, SONG J Z, et al. Efficient blue perovskite light-emitting diodes boosted by 2D/3D energy cascade channels [J]. Advanced Functional Materials, 2020, 30(27): 2001732. doi: 10.1002/adfm.202001732http://dx.doi.org/10.1002/adfm.202001732
JIANG N Z, WANG Z B, ZHENG Y H, et al. 2D/3D heterojunction perovskite light-emitting diodes with tunable ultrapure blue emissions [J]. Nano Energy, 2022, 97: 107181. doi: 10.1016/j.nanoen.2022.107181http://dx.doi.org/10.1016/j.nanoen.2022.107181
ZHANG Q G, WANG B, ZHENG W L, et al. Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates [J]. Nature Communications, 2020, 11(1): 31. doi: 10.1038/s41467-019-13881-0http://dx.doi.org/10.1038/s41467-019-13881-0
WANG Y N, HE J, CHEN H, et al. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films [J]. Advanced Materials, 2016, 28(48): 10710-10717. doi: 10.1002/adma.201603964http://dx.doi.org/10.1002/adma.201603964
林继栋,王志斌,张瑞丹,等.CsPbX3(X=Cl,Br,I)钙钛矿量子点玻璃制备及其应用研究进展[J].发光学报,2021,42(9):1331-1344. doi: 10.37188/cjl.20210183http://dx.doi.org/10.37188/cjl.20210183
LINJ D, WANGZ B, ZHANGR D, et al. Research progresses in preparation and applications of CsPbX3(X=Cl, Br, I) perovskite quantum dots-embedded glass [J]. Chinese Journal of Luminescence, 2021, 42(9): 1331-1344. (in Chinese). doi: 10.37188/cjl.20210183http://dx.doi.org/10.37188/cjl.20210183
LIN S S, LIN H, CHEN G X, et al. Stable CsPbBr3-glass nanocomposite for low-Étendue wide-color-gamut laser-driven projection display [J]. Laser & Photonics Reviews, 2021, 15(7): 2100044. doi: 10.1002/lpor.202100044http://dx.doi.org/10.1002/lpor.202100044
LIN J D, LU Y X, LI X Y, et al. Perovskite quantum dots glasses based backlit displays [J]. ACS Energy Letters, 2021, 6(2): 519-528. doi: 10.1021/acsenergylett.0c02561http://dx.doi.org/10.1021/acsenergylett.0c02561
LIU S J, HE M L, DI X X, et al. Precipitation and tunable emission of cesium lead halide perovskites (CsPbX3, X=Br, I) QDs in borosilicate glass [J]. Ceramics International, 2018, 44(4): 4496-4499. doi: 10.1016/j.ceramint.2017.12.012http://dx.doi.org/10.1016/j.ceramint.2017.12.012
YE Y, ZHANG W C, ZHAO Z Y, et al. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications [J]. Advanced Optical Materials, 2019, 7(9): 1801663. doi: 10.1002/adom.201801663http://dx.doi.org/10.1002/adom.201801663
XU Z S, CHEN T, ZHANG D D, et al. Tuning the optical properties in CsPbBr3 quantum dot-doped glass by modulation of its network topology [J]. Journal of Materials Chemistry C, 2021, 9(21): 6863-6872. doi: 10.1039/d1tc00993ahttp://dx.doi.org/10.1039/d1tc00993a
ZHANG X Z, LIN M Q, GUO L Z, et al. Long-wavelength pass filter using green CsPbBr3 quantum dots glass [J]. Optics & Laser Technology, 2021, 138: 106857. doi: 10.1016/j.optlastec.2020.106857http://dx.doi.org/10.1016/j.optlastec.2020.106857
HUANG X J, GUO Q Y, YANG D D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium [J]. Nature Photonics, 2020, 14(2): 82-88. doi: 10.1038/s41566-019-0538-8http://dx.doi.org/10.1038/s41566-019-0538-8
LI P P, LU Y, DUAN Y M, et al. Potential application of perovskite glass material in photocatalysis field [J]. The Journal of Physical Chemistry C, 2021, 125(4): 2382-2392. doi: 10.1021/acs.jpcc.0c11241http://dx.doi.org/10.1021/acs.jpcc.0c11241
EROL E, KIBRISLI O, ÇELIKBILEK ERSUNDU M, et al. Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites [J]. Chemical Engineering Journal, 2020, 401: 126053. doi: 10.1016/j.cej.2020.126053http://dx.doi.org/10.1016/j.cej.2020.126053
YANG C B, ZHUANG B, LIN J D, et al. Ultrastable glass-protected all-inorganic perovskite quantum dots with finely tunable green emissions for approaching Rec. 2020 backlit display [J]. Chemical Engineering Journal, 2020, 398: 125616. doi: 10.1016/j.cej.2020.125616http://dx.doi.org/10.1016/j.cej.2020.125616
COE-SULLIVAN S, LIU W H, ALLEN P, et al. Quantum dots for LED downconversion in display applications [J]. ECS Journal of Solid State Science and Technology, 2013, 2(2): R3026-R3030. doi: 10.1149/2.012302jsshttp://dx.doi.org/10.1149/2.012302jss
叶芸,喻金辉,林淑颜,等.量子点背光技术的研究进展[J].中国光学,2020,13(1):14-27. doi: 10.3788/co.20201301.0014http://dx.doi.org/10.3788/co.20201301.0014
YE Y, YU J H, LIN S Y, et al. Progress of quantum dot backlight technology [J]. Chinese Optics, 2020, 13(1): 14-27. (in Chinese). doi: 10.3788/co.20201301.0014http://dx.doi.org/10.3788/co.20201301.0014
WANG Q, TONG Y, YE H T, et al. Dual-protective CsPbX3 perovskite nanocomposites with improved stability for upconverted lasing and backlight displays [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11548-11555. doi: 10.1021/acssuschemeng.1c04070http://dx.doi.org/10.1021/acssuschemeng.1c04070
YANG Z, ZHANG H, FANG Z H, et al. One-step precipitated all-inorganic perovskite QDs from amorphous media for backlighting display and reproducible laser-driven white lighting [J]. Chemical Engineering Journal, 2022, 427: 131379. doi: 10.1016/j.cej.2021.131379http://dx.doi.org/10.1016/j.cej.2021.131379
YUAN S, CHEN D Q, LI X Y, et al. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing [J]. ACS Applied Materials & Interfaces, 2018, 10(22): 18918-18926. doi: 10.1021/acsami.8b05155http://dx.doi.org/10.1021/acsami.8b05155
YE Y, ZHANG W C, ZHANG Y D, et al. CsPbBr3 nanocrystals embedded glass enables highly stable and efficient light-emitting diodes [J]. Chemical Engineering Journal, 2022, 445: 136867. doi: 10.1016/j.cej.2022.136867http://dx.doi.org/10.1016/j.cej.2022.136867
NAM Y H, HAN K, CHUNG W J, et al. Double encapsulation of CsPbBr3 perovskite nanocrystals with inorganic glasses for robust color converters with wide color gamut [J]. ACS Applied Nano Materials, 2021, 4(7): 7072-7078. doi: 10.1021/acsanm.1c01079http://dx.doi.org/10.1021/acsanm.1c01079
ZHOU Q C, BAI Z L, LU W G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights [J]. Advanced Materials, 2016, 28(41): 9163-9168. doi: 10.1002/adma.201602651http://dx.doi.org/10.1002/adma.201602651
LU Y X, XU Y W, CHEN S X, et al. Ultra-narrowband emitting and highly stable CsPbX3@glass@PDMS (X3=Br3, Br1.5I1.5) monolithic composite film for backlit displays [J]. Journal of Luminescence, 2022, 248: 118952. doi: 10.1016/j.jlumin.2022.118952http://dx.doi.org/10.1016/j.jlumin.2022.118952
CHEN Z P, WANG Q, TONG Y, et al. Tunable green light-emitting CsPbBr3 based perovskite-nanocrystals-in-glass flexible film enables production of stable Backlight Display [J]. The Journal of Physical Chemistry Letters, 2022, 13(21): 4701-4709. doi: 10.1021/acs.jpclett.2c00076http://dx.doi.org/10.1021/acs.jpclett.2c00076
PANG X L, ZHANG H R, XIE L Q, et al. Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays [J]. Journal of Materials Chemistry C, 2019, 7(42): 13139-13148. doi: 10.1039/c9tc04732hhttp://dx.doi.org/10.1039/c9tc04732h
DU Y, WANG X, SHEN D Y, et al. Precipitation of CsPbBr3 quantum dots in borophosphate glasses inducted by heat-treatment and UV-NIR ultrafast lasers [J]. Chemical Engineering Journal, 2020, 401: 126132. doi: 10.1016/j.cej.2020.126132http://dx.doi.org/10.1016/j.cej.2020.126132
AI B, LIU C, WANG J, et al. Precipitation and Optical Properties of CsPbBr3 quantum dots in phosphate glasses [J]. Journal of the American Ceramic Society, 2016, 99(9): 2875-2877. doi: 10.1111/jace.14400http://dx.doi.org/10.1111/jace.14400
YANG B B, MEI S L, HE H Y, et al. Lead oxide enables lead volatilization pollution inhibition and phase purity modulation in perovskite quantum dots embedded borosilicate glass [J]. Journal of the European Ceramic Society, 2022, 42(1): 258-265. doi: 10.1016/j.jeurceramsoc.2021.09.052http://dx.doi.org/10.1016/j.jeurceramsoc.2021.09.052
ZHU R D, LUO Z Y, CHEN H W, et al. Realizing Rec. 2020 color gamut with quantum dot displays [J]. Optics Express, 2015, 23(18): 23680-23693. doi: 10.1364/oe.23.023680http://dx.doi.org/10.1364/oe.23.023680
WANG H C, LIN S Y, TANG A C, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display [J]. Angewandte Chemie International Edition, 2016, 55(28): 7924-7929. doi: 10.1002/anie.201603698http://dx.doi.org/10.1002/anie.201603698
KUMAR S, JAGIELSKI J, KALLIKOUNIS N, et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving recommendation 2020 color coordinates [J]. Nano Letters, 2017, 17(9): 5277-5284. doi: 10.1021/acs.nanolett.7b01544http://dx.doi.org/10.1021/acs.nanolett.7b01544
YU D J, CAO F, GAO Y J, et al. Room-temperature ion-exchange-mediated self-assembly toward formamidinium perovskite nanoplates with finely tunable, ultrapure green emissions for achieving Rec. 2020 displays [J]. Advanced Functional Materials, 2018, 28(19): 1800248. doi: 10.1002/adfm.201800248http://dx.doi.org/10.1002/adfm.201800248
LU M, ZHANG Y, WANG S X, et al. Metal halide perovskite light-emitting devices: promising technology for next-generation displays [J]. Advanced Functional Materials, 2019, 29(30): 1902008. doi: 10.1002/adfm.201902008http://dx.doi.org/10.1002/adfm.201902008
季洪雷,周青超,潘俊,等.量子点液晶显示背光技术[J].中国光学,2017,10(5):666-680. doi: 10.3788/co.20171005.0666http://dx.doi.org/10.3788/co.20171005.0666
JI H L, ZHOU Q C, PAN J, et al. Advances and prospects in quantum dots based backlights [J]. Chinese Optics, 2017, 10(5): 666-680. (in Chinese). doi: 10.3788/co.20171005.0666http://dx.doi.org/10.3788/co.20171005.0666
WEI Y, CHENG Z Y, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs [J]. Chemical Society Reviews, 2019, 48(1): 310-350. doi: 10.1039/c8cs00740chttp://dx.doi.org/10.1039/c8cs00740c
LIU M M, WAN Q, WANG H M, et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes [J]. Nature Photonics, 2021, 15(5): 379-385. doi: 10.1038/s41566-021-00766-2http://dx.doi.org/10.1038/s41566-021-00766-2
国家市场监督管理总局,中国国家标准化管理委员会.GB/T 37382-2019 光学功能薄膜 液晶显示背光模组用薄膜 高温高湿老化性能测定方法[S].北京:中国标准出版社,2019.
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. GB/T 37382-2019 Optical functional films-Films for backlight unit of liquid crystal display-High temperature and high humidity aging measurement [S]. Beijing: Standards Press of China, 2019. (in Chinese)
JIANG J T, SHAO G Z, ZHANG Z L, et al. Ultrastability and color-tunability of CsPb(Br/I)3 nanocrystals in P-Si-Zn glass for white LEDs [J]. Chemical Communications, 2018, 54(87): 12302-12305. doi: 10.1039/c8cc06442chttp://dx.doi.org/10.1039/c8cc06442c
LIN J D, WANG S X, CHEN G H, et al. Ultra-stable narrowband green-emitting CsPbBr3 quantum dot-embedded glass ceramics for wide color gamut backlit displays [J]. Journal of Materials Chemistry C, 2022, 10(18): 7263-7272. doi: 10.1039/d2tc00906dhttp://dx.doi.org/10.1039/d2tc00906d
ZHANG X Z, GUO L Z, ZHANG Y H, et al. Improved photoluminescence quantum yield of CsPbBr3 quantum dots glass ceramics [J]. Journal of the American Ceramic Society, 2020, 103(9): 5028-5035. doi: 10.1111/jace.17225http://dx.doi.org/10.1111/jace.17225
CHEN D Q, LIU Y, YANG C B, et al. Promoting photoluminescence quantum yields of glass-stabilized CsPbX3 (X=Cl, Br, I) perovskite quantum dots through fluorine doping [J]. Nanoscale, 2019, 11(37): 17216-17221. doi: 10.1039/C9NR07307Hhttp://dx.doi.org/10.1039/C9NR07307H
LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes [J]. Advanced Functional Materials, 2016, 26(15): 2435-2445. doi: 10.1002/adfm.201600109http://dx.doi.org/10.1002/adfm.201600109
LIU H W, WU Z N, GAO H, et al. One-step preparation of cesium lead halide CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals by microwave irradiation [J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42919-42927. doi: 10.1021/acsami.7b14677http://dx.doi.org/10.1021/acsami.7b14677
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence [J]. Journal of the American Chemical Society, 2016, 138(43): 14202-14205. doi: 10.1021/jacs.6b08900http://dx.doi.org/10.1021/jacs.6b08900
WANG Z T, FU R, LI F, et al. One-step polymeric melt encapsulation method to prepare CsPbBr3 perovskite quantum dots/polymethyl methacrylate composite with high performance [J]. Advanced Functional Materials, 2021, 31(22): 2010009. doi: 10.1002/adfm.202010009http://dx.doi.org/10.1002/adfm.202010009
LI F, HUANG S, LIU X Y, et al. Highly stable and spectrally tunable gamma phase RbxCs1-xPbI3 gradient-alloyed quantum dots in PMMA matrix through A sites engineering [J]. Advanced Functional Materials, 2021, 31(11): 2008211. doi: 10.1002/adfm.202008211http://dx.doi.org/10.1002/adfm.202008211
0
浏览量
165
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构