1.上海海洋大学 信息学院, 上海 201306
2.自然资源部东海信息中心, 上海 200136
3.上海电力大学, 上海 201306
[ "杜艳玲(1987—),女,河南新乡人,博士,讲师,2017年于上海海洋大学获得博士学位,主要从事目标检测、模式识别方面的研究。E-mail:yldu@shou.edu.cn" ]
[ "黄冬梅(1964—),女,河南郑州人,硕士,教授,1991年于解放军信息工程大学获得硕士学位,主要从事海洋遥感处理与分析、海洋大数据管理和智能辅助决策系统方面的研究。E-mail:dmhuang@shou.edu.cn" ]
扫 描 看 全 文
杜艳玲, 徐鑫, 王丽丽, 等. 改进无锚点的彩色遥感图像任意方向飞机目标检测算法[J]. 液晶与显示, 2023,38(3):409-417.
DU Yan-ling, XU Xin, WANG Li-li, et al. Improved aircraft detection algorithm in arbitrary direction of color remote sensing image based on anchor-free method[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(3):409-417.
杜艳玲, 徐鑫, 王丽丽, 等. 改进无锚点的彩色遥感图像任意方向飞机目标检测算法[J]. 液晶与显示, 2023,38(3):409-417. DOI: 10.37188/CJLCD.2022-0218.
DU Yan-ling, XU Xin, WANG Li-li, et al. Improved aircraft detection algorithm in arbitrary direction of color remote sensing image based on anchor-free method[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(3):409-417. DOI: 10.37188/CJLCD.2022-0218.
针对彩色遥感图像上飞机目标体积小、分布密集、背景复杂导致的检测精度低问题,提出了一种改进无锚点的彩色遥感图像任意方向飞机目标检测算法。采用BBAVectors为基准模型,以ResNet50为主干网进行特征提取,在特征金字塔网络FPN后增加一条自上而下的路径扩展网络PANet模块,缩短信息路径并用低层级准确位置信息增强特征金字塔。其次,引入注意力机制CBAM模块,通过抑制噪声和突出目标特征,实现复杂环境下的飞机目标检测精度的提升。在DOTA数据集上分别进行消融实验和对比实验,并使用DOTA_devkit对数据集分别进行0.5以及1倍比例的裁切,提高模型的检测精度。改进后的模型在彩色遥感图像测试数据集上的检测精度达到了90.35%。相较于原模型,检测精度提升了0.82%。实验结果表明,该方法在彩色遥感图像中的飞机检测任务中具有更好的检测效果。
Aiming at the problem of low detection accuracy caused by small volume, dense distribution and complex background of aircraft targets in the color remote sensing images, an improved aircraft target detection algorithm in any direction of the color remote sensing images based on anchor-free is proposed. Using BBAVectors as the benchmark model and ResNet50 as the backbone network for feature extraction. after the feature pyramid network (FPN), a top-down path augmentation network (PANet) module is added to shorten the information path and enhance the feature pyramid with low-level accurate location information. Secondly, the attention mechanism convolutional block attention module(CBAM) is introduced to improve the accuracy of aircraft target detection in complex environment by suppressing the noise and highlighting target characteristics. Ablation experiments and comparative experiments are conducted on DOTA data sets, and DOTA_ Devkit is used to cut the data set by 0.5 and 1 times respectively to improve the detection accuracy of the model. The detection accuracy of the improved model on the color remote sensing image test data set reaches 90.35%. Compared with the original model, the detection accuracy is improved by 0.82%. The experimental results show that this method has better detection effect in the aircraft detection task in color remote sensing images.
飞机目标检测任意方向无锚点路径扩展注意力机制
aircraft target detectionin any directionanchor freepath augmentationattention mechanism
MA Y, WU H P, WANG L Z, et al. Remote sensing big data computing: challenges and opportunities [J]. Future Generation Computer Systems, 2015, 51: 47-60. doi: 10.1016/j.future.2014.10.029http://dx.doi.org/10.1016/j.future.2014.10.029
侯笑晗,金国栋,谭力宁.基于深度学习的SAR图像舰船目标检测综述[J].激光与光电子学进展,2021,58(4):0400005. doi: 10.3788/lop202158.0400005http://dx.doi.org/10.3788/lop202158.0400005
HOU X H, JIN G D, TAN L N. Survey of ship detection in SAR images based on deep learning [J]. Laser & Optoelectronics Progress, 2021, 58(4): 0400005. (in Chinese). doi: 10.3788/lop202158.0400005http://dx.doi.org/10.3788/lop202158.0400005
张瑞琰,姜秀杰,安军社,等.面向光学遥感目标的全局上下文检测模型设计[J].中国光学,2020,13(6):1302-1313. doi: 10.37188/CO.2020-0057http://dx.doi.org/10.37188/CO.2020-0057
ZHANG R Y, JIANG X J, AN J S, et al. Design of global-contextual detection model for optical remote sensing targets [J]. Chinese Optics, 2020, 13(6): 1302-1313.(in Chinese). doi: 10.37188/CO.2020-0057http://dx.doi.org/10.37188/CO.2020-0057
黄乐弘,曹立华,李宁,等.深度学习的空间红外弱小目标状态感知方法[J].中国光学,2020,13(3):527-536.
HUANG L H, CAO L H, LI N, et al. A state perception method for infrared dim and small targets with deep learning [J]. Chinese Optics, 2020, 13(3): 527-536.(in Chinese)
梁华,宋玉龙,钱锋,等.基于深度学习的航空对地小目标检测[J].液晶与显示,2018,33(9):793-800. doi: 10.3788/YJYXS20183309.0793http://dx.doi.org/10.3788/YJYXS20183309.0793
LIANG H, SONG Y L, QIAN F, et al. Detection of small target in aerial photography based on deep learning [J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(9): 793-800.(in Chinese). doi: 10.3788/YJYXS20183309.0793http://dx.doi.org/10.3788/YJYXS20183309.0793
王浩桐,郭中华.改进SSD的飞机遥感图像目标检测[J].液晶与显示,2022,37(1):116-127. doi: 10.37188/CJLCD.2021-0203http://dx.doi.org/10.37188/CJLCD.2021-0203
WANG H T, GUO Z H. Improved SSD based aircraft remote sensing image target detection [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(1): 116-127.(in Chinese). doi: 10.37188/CJLCD.2021-0203http://dx.doi.org/10.37188/CJLCD.2021-0203
CHENG G, HAN J W. A survey on object detection in optical remote sensing images [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 11-28. doi: 10.1016/j.isprsjprs.2016.03.014http://dx.doi.org/10.1016/j.isprsjprs.2016.03.014
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999-3007. doi: 10.1109/iccv.2017.324http://dx.doi.org/10.1109/iccv.2017.324
YANG X, YAN J C, FENG Z M, et al. R3Det: refined single-stage detector with feature refinement for rotating object [J/OL]. arXiv, 2019:1908.05612.
HAN J M, DING J, LI J, et al. Align deep features for oriented object detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5602511. doi: 10.1109/tgrs.2021.3062048http://dx.doi.org/10.1109/tgrs.2021.3062048
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/tpami.2016.2577031http://dx.doi.org/10.1109/tpami.2016.2577031
MA J Q, SHAO W Y, YE H, et al. Arbitrary-oriented scene text detection via rotation proposals [J]. IEEE Transactions on Multimedia, 2018, 20(11): 3111-3122. doi: 10.1109/tmm.2018.2818020http://dx.doi.org/10.1109/tmm.2018.2818020
HAN J M, DING J, XUE N, et al. ReDet: a rotation-equivariant detector for aerial object detection [C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 2786-2795. doi: 10.1109/cvpr46437.2021.00281http://dx.doi.org/10.1109/cvpr46437.2021.00281
YANG X, YANG J R, YAN J C, et al. SCRDet: towards more robust detection for small, cluttered and rotated objects [C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 8231-8240. doi: 10.1109/iccv.2019.00832http://dx.doi.org/10.1109/iccv.2019.00832
ZHANG G J, LU S J, ZHANG W. CAD-Net: a context-aware detection network for objects in remote sensing imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10015-10024. doi: 10.1109/tgrs.2019.2930982http://dx.doi.org/10.1109/tgrs.2019.2930982
LAW H, DENG J. CornerNet: detecting objects as paired keypoints [C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich: Springer, 2018: 765-781. doi: 10.1007/978-3-030-01264-9_45http://dx.doi.org/10.1007/978-3-030-01264-9_45
DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection [C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6568-6577. doi: 10.1109/iccv.2019.00667http://dx.doi.org/10.1109/iccv.2019.00667
TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection [C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9626-9635. doi: 10.1109/iccv.2019.00972http://dx.doi.org/10.1109/iccv.2019.00972
KONG T, SUN F C, LIU H P, et al. FoveaBox: Beyound anchor-based object detection [J]. IEEE Transactions on Image Processing, 2020, 29: 7389-7398. doi: 10.1109/tip.2020.3002345http://dx.doi.org/10.1109/tip.2020.3002345
YANG Z, LIU S H, HU H, et al. RepPoints: point set representation for object detection [C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9656-9665. doi: 10.1109/iccv.2019.00975http://dx.doi.org/10.1109/iccv.2019.00975
YI J R, WU P X, LIU B, et al. Oriented object detection in aerial images with box boundary-aware vectors [C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 2149-2158. doi: 10.1109/wacv48630.2021.00220http://dx.doi.org/10.1109/wacv48630.2021.00220
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768. doi: 10.1109/cvpr.2018.00913http://dx.doi.org/10.1109/cvpr.2018.00913
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich: Springer, 2018: 3-19. doi: 10.1007/978-3-030-01234-2_1http://dx.doi.org/10.1007/978-3-030-01234-2_1
0
浏览量
89
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构