1.南京大学 现代工程与应用科学学院, 江苏 南京 210023
[ "刘思嘉(1999—),女,江苏南京人,博士研究生,2021年于南京大学获得学士学位,主要从事液晶微结构操控及光场调控方面的研究。E-mail:dz21340007@smail.nju.edu.cn" ]
[ "陈 鹏(1992—),男,江苏扬州人,博士,副教授,2019年于南京大学获得博士学位,主要从事液晶微纳光学及其应用方面的研究。E-mail:chenpeng@nju.edu.cn" ]
扫 描 看 全 文
刘思嘉, 张逸恒, 朱琳, 等. 基于光取向技术的液晶螺旋达曼波带片[J]. 液晶与显示, 2023,38(1):1-9.
LIU Si-jia, ZHANG Yi-heng, ZHU Lin, et al. Liquid crystal spiral Dammann zone plates based on photoalignment technology[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):1-9.
刘思嘉, 张逸恒, 朱琳, 等. 基于光取向技术的液晶螺旋达曼波带片[J]. 液晶与显示, 2023,38(1):1-9. DOI: 10.37188/CJLCD.2022-0178.
LIU Si-jia, ZHANG Yi-heng, ZHU Lin, et al. Liquid crystal spiral Dammann zone plates based on photoalignment technology[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):1-9. DOI: 10.37188/CJLCD.2022-0178.
涡旋光阵列在光通信、多微粒操控、并行激光加工等领域有着广阔的应用前景,近年来受到越来越多的关注。然而动态可调的纵向涡旋光阵列的实现仍具有一定挑战性。本文基于达曼编码方法与液晶光取向技术,设计并制备出一种液晶螺旋达曼波带片。实验结果表明,该器件可以高效地产生拓扑荷数逐级变化的1×5纵向涡旋光阵列,并可以通过改变外加电压来动态切换器件的开关态。此外,该器件通过水平/竖直翻转一次或是改变入射光模式,还可以对产生的纵向涡旋光阵列的拓扑荷数进行反转变换或加减运算。液晶螺旋达曼波带片兼具低成本、高效率、电光可调等优势,有望促进液晶光电元件在多维光场调控等领域的应用。
In recent years, optical vortex arrays have attracted increasing attention for their potential applications in numerous areas, such as optical communications, multiple-particle manipulation and parallel laser fabrication. However, the generation of switchable longitudinal vortex arrays remains a great challenge. In this paper, a liquid crystal (LC) spiral Dammann zone plate is designed via the Dammann encoding method and fabricated via the LC photoalignment technology. The experimental results show that this device can create a 1×5 longitudinal vortex array with high efficiency, and with space-variant topological charges. Through tuning the applied voltage, the device can be switched between ON and OFF state dynamically. Besides, the topological charges of the generated longitudinal vortex array can undergo a reversal or additive transformation by horizontally/vertically flipping the device or altering the mode of incident light. The LC spiral Dammann zone plate is distinguished by low cost, high efficiency and electro-optical tunability, thus facilitating the applications of LC elements in the field of multi-dimensional beam shaping.
液晶光取向技术涡旋光阵列达曼光栅
liquid crystalphotoalignment technologyoptical vortex arrayDammann grating
DAMMANN H, GO¨RTLER K. High-efficiency in-line multiple imaging by means of multiple phase holograms [J]. Optics Communications, 1971, 3(5): 312-315. doi: 10.1016/0030-4018(71)90095-2http://dx.doi.org/10.1016/0030-4018(71)90095-2
DAMMANN H, KLOTZ E. Coherent optical generation and inspection of two-dimensional periodic structures [J]. Optica Acta: International Journal of Optics, 1977, 24(4): 505-515. doi: 10.1080/713819570http://dx.doi.org/10.1080/713819570
SHEN Y J, WANG X J, XIE Z W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities [J]. Light: Science & Applications, 2019, 8: 90. doi: 10.1038/s41377-019-0194-2http://dx.doi.org/10.1038/s41377-019-0194-2
CHEN J, WAN C H, ZHAN Q W. Engineering photonic angular momentum with structured light: a review [J]. Advanced Photonics, 2021, 3(6): 064001. doi: 10.1117/1.ap.3.6.064001http://dx.doi.org/10.1117/1.ap.3.6.064001
ZHANG N, YUAN X C, BURGE R E. Extending the detection range of optical vortices by Dammann vortex gratings [J]. Optics Letters, 2010, 35(20): 3495-3497. doi: 10.1364/ol.35.003495http://dx.doi.org/10.1364/ol.35.003495
YU J J, ZHOU C H, JIA W, et al. Generation of controllable rotating petal-like modes using composited Dammann vortex gratings [J]. Applied Optics, 2015, 54(7): 1667-1672. doi: 10.1364/ao.54.001667http://dx.doi.org/10.1364/ao.54.001667
MORENO I, DAVIS J A, COTTRELL D M, et al. Encoding generalized phase functions on Dammann gratings [J]. Optics Letters, 2010, 35(10): 1536-1538. doi: 10.1364/ol.35.001536http://dx.doi.org/10.1364/ol.35.001536
CHEN P, GE S J, MA L L, et al. Generation of equal-energy orbital angular momentum beams via photopatterned liquid crystals [J]. Physical Review Applied, 2016, 5(4): 044009. doi: 10.1103/physrevapplied.5.044009http://dx.doi.org/10.1103/physrevapplied.5.044009
YU J J, ZHOU C H, JIA W, et al. Three-dimensional Dammann vortex array with tunable topological charge [J]. Applied Optics, 2012, 51(13): 2485-2490. doi: 10.1364/ao.51.002485http://dx.doi.org/10.1364/ao.51.002485
YU J J, ZHOU C H, JIA W, et al. Generation of dipole vortex array using spiral Dammann zone plates [J]. Applied Optics, 2012, 51(28): 6799-6804. doi: 10.1364/ao.51.006799http://dx.doi.org/10.1364/ao.51.006799
HUANG L L, SONG X, REINEKE B, et al. Volumetric generation of optical vortices with metasurfaces [J]. ACS Photonics, 2017, 4(2): 338-346. doi: 10.1021/acsphotonics.6b00808http://dx.doi.org/10.1021/acsphotonics.6b00808
DAVIS J A, COTTRELL D M, MCCORMICK K R, et al. Arithmetic of focused vortex beams in three-dimensional optical lattice arrays [J]. Applied Optics, 2014, 53(10): 2040-2050. doi: 10.1364/ao.53.002040http://dx.doi.org/10.1364/ao.53.002040
ZHU L, XU C T, CHEN P, et al. Pancharatnam-Berry phase reversal via opposite-chirality-coexisted superstructures [J]. Light: Science & Applications, 2022, 11: 135. doi: 10.1038/s41377-022-00835-3http://dx.doi.org/10.1038/s41377-022-00835-3
CHEN P, WEI B Y, HU W, et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics [J]. Advanced Materials, 2020, 32(27): 1903665.
余丽红,沈冬,郑致刚.基于SLM投影拼接技术的液晶光学元件制备[J].液晶与显示,2022,37(9):1132-1139. doi: 10.37188/CJLCD.2022-0153http://dx.doi.org/10.37188/CJLCD.2022-0153
YU L H, SHEN D, ZHENG Z G. Fabrication of liquid crystal optical elements based on SLM projection splicing technology [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(9): 1132-1139. (in Chinese). doi: 10.37188/CJLCD.2022-0153http://dx.doi.org/10.37188/CJLCD.2022-0153
BHEBHE N, WILLIAMS P A C, ROSALES-GUZMÁN C, et al. A vector holographic optical trap [J]. Scientific Reports, 2018, 8(1): 17387. doi: 10.1038/s41598-018-35889-0http://dx.doi.org/10.1038/s41598-018-35889-0
GU M, LIN H, LI X P. Parallel multiphoton microscopy with cylindrically polarized multifocal arrays [J]. Optics Letters, 2013, 38(18): 3627-3630. doi: 10.1364/ol.38.003627http://dx.doi.org/10.1364/ol.38.003627
HASEGAWA S, HAYASAKI Y. Holographic vector wave femtosecond laser processing [J]. International Journal of Optomechatronics, 2014, 8(2): 73-88. doi: 10.1080/15599612.2014.901456http://dx.doi.org/10.1080/15599612.2014.901456
CHEN P, GE S J, DUAN W, et al. Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding [J]. ACS Photonics, 2017, 4(6): 1333-1338. doi: 10.1021/acsphotonics.7b00263http://dx.doi.org/10.1021/acsphotonics.7b00263
XU R, CHEN P, TANG J, et al. Perfect higher-order Poincaré sphere beams from digitalized geometric phases [J]. Physical Review Applied, 2018, 10(3): 034061. doi: 10.1103/physrevapplied.10.034061http://dx.doi.org/10.1103/physrevapplied.10.034061
CHEN P, MA L L, DUAN W, et al. Digitalizing self-assembled chiral superstructures for optical vortex processing [J]. Advanced Materials, 2018, 30(10): 1705865. doi: 10.1002/adma.201705865http://dx.doi.org/10.1002/adma.201705865
ZHANG Y H, CHEN P, GE S J, et al. Spin-controlled massive channels of hybrid-order Poincaré sphere beams [J]. Applied Physics Letters, 2020, 117(8): 081101. doi: 10.1063/5.0020398http://dx.doi.org/10.1063/5.0020398
XU C T, CHEN P, ZHANG Y H, et al. Tunable band-pass optical vortex processor enabled by wash-out-refill chiral superstructures [J]. Applied Physics Letters, 2021, 118(15): 151102. doi: 10.1063/5.0041117http://dx.doi.org/10.1063/5.0041117
LIU S J, CHEN P, GE S J, et al. 3D engineering of orbital angular momentum beams via liquid‐crystal geometric phase [J]. Laser & Photonics Reviews, 2022, 16(6): 2200118. doi: 10.1002/lpor.202200118http://dx.doi.org/10.1002/lpor.202200118
ZHOU C H, LIU L R. Numerical study of Dammann array illuminators [J]. Applied Optics, 1995, 34(26): 5961-5969. doi: 10.1364/ao.34.005961http://dx.doi.org/10.1364/ao.34.005961
CHEN K X, XU C T, ZHOU Z, et al. Multifunctional liquid crystal device for grayscale pattern display and holography with tunable spectral-response [J]. Laser & Photonics Reviews, 2022, 16(3): 2100591. doi: 10.1002/lpor.202100591http://dx.doi.org/10.1002/lpor.202100591
曹慧敏, 吴赛博, 王靖阁, 等. 光取向液晶微结构及其光子元件[J]. 液晶与显示, 2021, 36(7): 921-938. doi: 10.37188/CJLCD.2021-0004http://dx.doi.org/10.37188/CJLCD.2021-0004
CAO H M, WU S B, WANG J G, et al. Photoalignment enabled liquid crystal microstructures for optics and photonics [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(7): 921-938. (in Chinese). doi: 10.37188/CJLCD.2021-0004http://dx.doi.org/10.37188/CJLCD.2021-0004
AKIYAMA H, KAWARA T, TAKADA H, et al. Synthesis and properties of azo dye aligning layers for liquid crystal cells [J]. Liquid Crystals, 2002, 29(10): 1321-1327. doi: 10.1080/713935610http://dx.doi.org/10.1080/713935610
WU H, HU W, HU H C, et al. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system [J]. Optics Express, 2012, 20(15): 16684-16689. doi: 10.1364/oe.20.016684http://dx.doi.org/10.1364/oe.20.016684
MARRUCCI L, MANZO C, PAPARO D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media [J]. Physical Review Letters, 2006, 96(16): 163905. doi: 10.1103/physrevlett.96.163905http://dx.doi.org/10.1103/physrevlett.96.163905
CHEN P, MA L L, HU W, et al. Chirality invertible superstructure mediated active planar optics [J]. Nature Communications, 2019, 10(1): 2518. doi: 10.1038/s41467-019-10538-whttp://dx.doi.org/10.1038/s41467-019-10538-w
ZHANG Y H, CHEN P, XU C T, et al. Dynamically selective and simultaneous detection of spin and orbital angular momenta of light with thermoresponsive self-assembled chiral superstructures [J]. ACS Photonics, 2022, 9(3): 1050-1057. doi: 10.1021/acsphotonics.1c02017http://dx.doi.org/10.1021/acsphotonics.1c02017
CHEN P, SHEN Z X, XU C T, et al. Simultaneous realization of dynamic and hybrid multiplexed holography via light-activated chiral superstructures [J]. Laser & Photonics Reviews, 2022, 16(5): 2200011. doi: 10.1002/lpor.202200011http://dx.doi.org/10.1002/lpor.202200011
0
浏览量
226
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构