1.华南理工大学 华南软物质科学与技术高等研究院, 广东 广州 510640
2.华南理工大学 前沿软物质学院, 广东 广州 510640
[ "赵秀虎(1994—),男,安徽马鞍山人,博士研究生,2019年于燕山大学获得硕士学位,主要从事液晶物理和非线性光学方面的研究。E-mail:zhaoxiuhu1994@163.com" ]
[ "黄明俊(1988—),男,江西鹰潭人,博士,教授,特聘研究员,2015年于美国阿克伦大学获得博士学位,主要从事杂化大分子自组装、锂离子电池中的新型高分子电解质、新型高分子液晶材料设计及其光学、介电性能等方面的研究。E-mail:huangmj25@scut.edu.cn" ]
[ "Satoshi AYA (谢晓晨)(1988—),男,日籍华人,博士,教授,特聘研究员,2014年于东京工业大学获得博士学位,主要从事液晶、胶体等软物质的基础物理、有序调控以及功能应用开发等方面的研究。E-mail:satoshiaya@scut. edu. cn" ]
扫 描 看 全 文
赵秀虎, 黄明俊, Satoshi AYA. 铁电向列相液晶的研究进展[J]. 液晶与显示, 2023,38(1):77-94.
ZHAO Xiu-hu, HUANG Ming-jun, Satoshi AYA. Research progress of ferroelectric nematic liquid crystals[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):77-94.
赵秀虎, 黄明俊, Satoshi AYA. 铁电向列相液晶的研究进展[J]. 液晶与显示, 2023,38(1):77-94. DOI: 10.37188/CJLCD.2022-0130.
ZHAO Xiu-hu, HUANG Ming-jun, Satoshi AYA. Research progress of ferroelectric nematic liquid crystals[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):77-94. DOI: 10.37188/CJLCD.2022-0130.
铁电性是电介质具备的一种自发极化状态,普遍发现于对称性较低的晶(固)体材料体系。流体或高流动性软物质材料通常呈现高对称性,因而与铁电性的要求是相违背的。引入强极性或者铁电性是液晶新材料领域备受关注的策略,对开发新型柔性光电器件具有重要意义,在液晶乃至软物质流体材料中一直充满挑战性。相比于传统的液晶和软物质材料,铁电向列相液晶具备多种变革性性质,包括超高介电常数、强非线性光学响应、低电压驱动以及高流动性等,为开发新型先进的柔性光学和电学器件提供了新的可能性。本文介绍了铁电向列相液晶的发展历史,重点阐述了铁电向列相液晶与分子结构之间的关系、物理拓扑结构及特征物性,总结并展望了铁电向列相液晶的未来应用前景,尤其是在新型存储设备、柔性高端光电子器件、非线性光学等领域具有巨大潜力。
Ferroelectricity is a spontaneous polarization state possessed by dielectrics, which generally occurs in crystalline (solid) material systems with low symmetry. Fluid or highly fluid soft matter systems usually exhibit high symmetry, which is contrary to the requirement of ferroelectricity. The introduction of strong polarity or ferroelectricity is a strategy that has attracted much attention in the fields of new liquid crystal materials and flexible optoelectronic devices. Compared with the traditional liquid crystals and soft matter systems, the ferroelectric nematic liquid crystals possess several revolutionary properties, including ultra-high dielectric permittivity, strong nonlinear optical response, low-voltage driving and high fluidity. It provides numerous possibilities for the development of novel advanced flexible optical and electronic devices. This review looks back the history of the foundation and development of the ferroelectric nematic liquid crystals, then, explains the relationship between the ferroelectric nematic liquid crystals and the molecular structure, physical topology, and characteristic properties. Finally, this review summarizes and makes a short perspective on the future applications by employing the ferroelectric nematic liquid crystals. The ferroelectric nematic liquid crystals have great potential in new memory devices, flexible high-end optoelectronic devices, nonlinear optics, and other fields.
铁电性液晶非线性光学铁电向列相极性
ferroelectricityliquid crystalnonlinear opticsferroelectric nematicpolarity
SMALYUKH I I. Liquid crystal colloids [J]. Annual Review of Condensed Matter Physics, 2018, 9: 207-226. doi: 10.1146/annurev-conmatphys-033117-054102http://dx.doi.org/10.1146/annurev-conmatphys-033117-054102
KIM D Y, JEONG K U. Light responsive liquid crystal soft matters: structures, properties, and applications [J]. Liquid Crystals Today, 2019, 28(2): 34-45. doi: 10.1080/1358314x.2019.1653588http://dx.doi.org/10.1080/1358314x.2019.1653588
PRAKASH J, CHANDRAN A, BIRADAR A M. Scientific developments of liquid crystal-based optical memory: a review [J]. Reports on Progress in Physics, 2017, 80(1): 016601. doi: 10.1088/0034-4885/80/1/016601http://dx.doi.org/10.1088/0034-4885/80/1/016601
DRZAIC P S. Polymer dispersed nematic liquid crystal for large area displays and light valves [J]. Journal of Applied Physics, 1986, 60(6): 2142-2148. doi: 10.1063/1.337167http://dx.doi.org/10.1063/1.337167
GRAY G W, HARRISON K J, NASH J A. New family of nematic liquid crystals for displays [J]. Electronics Letters, 1973, 9(6): 130-131. doi: 10.1049/el:19730096http://dx.doi.org/10.1049/el:19730096
JEONG H C, LEE J H, WON J, e alt. One-dimensional surface wrinkling for twisted nematic liquid crystal display based on ultraviolet nanoimprint lithography [J]. Optics Express, 2019, 27(13): 18094-18101. doi: 10.1364/oe.27.018094http://dx.doi.org/10.1364/oe.27.018094
XU D M, RAO L H, TU C D, e alt. Nematic liquid crystal display with submillisecond grayscale response time [J]. Journal of Display Technology, 2013, 9(2): 67-70. doi: 10.1109/jdt.2012.2232902http://dx.doi.org/10.1109/jdt.2012.2232902
AHARONI H, XIA Y, ZHANG X Y, e alt. Universal inverse design of surfaces with thin nematic elastomer sheets [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(28): 7206-7211. doi: 10.1073/pnas.1804702115http://dx.doi.org/10.1073/pnas.1804702115
WU K M, SUN J J, GAO L, e alt. Highly sensitive and transparent flexible temperature sensor based on nematic liquid crystals [J]. Liquid Crystals, 2022, 49(3): 372-379. doi: 10.1080/02678292.2021.1970834http://dx.doi.org/10.1080/02678292.2021.1970834
HOGAN B T, KOVALSKA E, CRACIUN M F, e alt. 2D material liquid crystals for optoelectronics and photonics [J]. Journal of Materials Chemistry C, 2017, 5(43): 11185-11195. doi: 10.1039/c7tc02549ahttp://dx.doi.org/10.1039/c7tc02549a
KOKHANCHIK P, SIGURDSSON H, PIĘTKA B, e alt. Photonic Berry curvature in double liquid crystal microcavities with broken inversion symmetry [J]. Physical Review B, 2021, 103(8): L081406. doi: 10.1103/physrevb.103.l081406http://dx.doi.org/10.1103/physrevb.103.l081406
WANG Y R, FANG D Q, FU T C, e alt. Anthracene derivative based multifunctional liquid crystal materials for optoelectronic devices [J]. Materials Chemistry Frontiers, 2020, 4(12): 3546-3555. doi: 10.1039/d0qm00038hhttp://dx.doi.org/10.1039/d0qm00038h
乌日娜,王兴,杨帆,等.染料掺杂手性向列相液晶器件中实现随机激光辐射[J].液晶与显示,2018,33(6):464-468. doi: 10.3788/YJYXS20183306.0464http://dx.doi.org/10.3788/YJYXS20183306.0464
WU R N, WANG X, YANG F, e alt. Realization of random lasing in dye-doped chiral nematic liquid crystal [J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(6): 464-468. (in Chinese). doi: 10.3788/YJYXS20183306.0464http://dx.doi.org/10.3788/YJYXS20183306.0464
BEECKMAN J, NEYTS K, VANBRABANT P J M. Liquid-crystal photonic applications [J]. Optical Engineering, 2011, 50(8): 081202. doi: 10.1117/1.3565046http://dx.doi.org/10.1117/1.3565046
CHEN K X, HOU Y, CHEN S Q, e alt. Design, fabrication, and applications of liquid crystal microlenses [J]. Advanced Optical Materials, 2021, 9(20): 2100370. doi: 10.1002/adom.202100370http://dx.doi.org/10.1002/adom.202100370
ERTMAN S, RUTKOWSKA K, WOLIŃSKI T R. Recent progress in liquid-crystal optical fibers and their applications in photonics [J]. Journal of Lightwave Technology, 2019, 37(11): 2516-2526. doi: 10.1109/jlt.2018.2869916http://dx.doi.org/10.1109/jlt.2018.2869916
LI R J, CAO L C. Progress in phase calibration for liquid crystal spatial light modulators [J]. Applied Sciences, 2019, 9(10): 2012. doi: 10.3390/app9102012http://dx.doi.org/10.3390/app9102012
MAUNE H, JOST M, REESE R, e alt. Microwave liquid crystal technology [J]. Crystals, 2018, 8(9): 355. doi: 10.3390/cryst8090355http://dx.doi.org/10.3390/cryst8090355
LAGERWALL J P F, SCALIA G. A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology [J]. Current Applied Physics, 2012, 12(6): 1387-1412. doi: 10.1016/j.cap.2012.03.019http://dx.doi.org/10.1016/j.cap.2012.03.019
LIN Y H, HU W, LIN T H, e alt. Liquid crystal beyond displays: feature introduction [J]. Optics Express, 2019, 27(15): 20785-20786. doi: 10.1364/oe.27.020785http://dx.doi.org/10.1364/oe.27.020785
朱智康,黄凯,张鸿州,等.多波长与带宽可调液晶滤波器[J].液晶与显示,2021,36(4):516-521. doi: 10.37188/CJLCD.2020-0306http://dx.doi.org/10.37188/CJLCD.2020-0306
ZHU Z K, HUANG K, ZHANG H Z, e alt. Multi-wavelength and bandwidth tunable liquid crystal filter [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(4): 516-521. (in Chinese). doi: 10.37188/CJLCD.2020-0306http://dx.doi.org/10.37188/CJLCD.2020-0306
王建闯,王文忠,于海峰.光驱动液晶聚合物振动器研究进展[J].液晶与显示,2022,37(2):186-198. doi: 10.37188/CJLCD.2021-0253http://dx.doi.org/10.37188/CJLCD.2021-0253
WANG J C, WANG W Z, YU H F. Research progress in light-driven oscillators of liquid-crystalline polymers [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(2): 186-198. (in Chinese). doi: 10.37188/CJLCD.2021-0253http://dx.doi.org/10.37188/CJLCD.2021-0253
BORN M. Über anisotrope flüssigkeiten. Versuch einer theorie der flüssigen kristalle und des elektrischen kerr-effekts in flüssigkeiten [J]. Sitzungsber Preuss Akad Wiss, 1916, 30: 614-650.
MEYER R B, LIEBERT L, STRZELECKI L, e alt. Ferroelectric liquid crystals [J]. Journal de Physique Lettres, 1975, 36(3): 69-71. doi: 10.1051/jphyslet:0197500360306900http://dx.doi.org/10.1051/jphyslet:0197500360306900
FÜNFSCHILLING J, SCHADT M. Fast responding and highly multiplexible distorted helix ferroelectric liquid‐crystal displays [J]. Journal of Applied Physics, 1989, 66(8): 3877-3882. doi: 10.1063/1.344452http://dx.doi.org/10.1063/1.344452
SHUKLA R K, RAINA K K, HAASE W. Fast switching response and dielectric behaviour of fullerene/ferroelectric liquid crystal nanocolloids [J]. Liquid Crystals, 2014, 41(12): 1726-1732. doi: 10.1080/02678292.2014.949889http://dx.doi.org/10.1080/02678292.2014.949889
BERESNEV L A, CHIGRINOV V G, DERGACHEV D I, e alt. Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals [J]. Liquid Crystals, 1989, 5(4): 1171-1177. doi: 10.1080/02678298908026421http://dx.doi.org/10.1080/02678298908026421
DIERKING I. Polymer network-stabilized liquid crystals [J]. Advanced Materials, 2000, 12(3): 167-181. doi: 10.1002/(sici)1521-4095(200002)12:3<167::aid-adma167>3.0.co;2-ihttp://dx.doi.org/10.1002/(sici)1521-4095(200002)12:3<167::aid-adma167>3.0.co;2-i
CLARK N A, HANDSCHY M A, LAGERWALL S T. Ferroelectric liquid crystal electro-optics using the surface stabilized structure [J]. Molecular Crystals and Liquid Crystals, 1983, 94(1/2): 213-233. doi: 10.1080/00268948308084258http://dx.doi.org/10.1080/00268948308084258
YOSHINO K, OZAKI M, AGAWA H, e alt. Thickness and temperature dependences of dielectric property and electro-optic effect in ferroelectric liquid crystal [J]. Ferroelectrics, 1984, 58(1): 283-304. doi: 10.1080/00150198408237875http://dx.doi.org/10.1080/00150198408237875
CLARK N A, HANDSCHY M A. Surface-stabilized ferroelectric liquid-crystal electro-optic waveguide switch [J]. Applied Physics Letters, 1990, 57(18): 1852-1854. doi: 10.1063/1.104037http://dx.doi.org/10.1063/1.104037
GUYMON C A, HOGGA E N, WALBA D M, e alt. Phase behaviour and electro-optic characteristics of a polymer stabilized ferroelectric liquid crystal [J]. Liquid Crystals, 1995, 19(6): 719-727. doi: 10.1080/02678299508031091http://dx.doi.org/10.1080/02678299508031091
OZAKI M, TAGAWA A, HATAI T, e alt. Nonlinear optical response in ferroelectric liquid crystal [J]. Molecular Crystals and Liquid Crystals, 1991, 199(1): 213-221. doi: 10.1080/00268949108030932http://dx.doi.org/10.1080/00268949108030932
YOSHINO K, UTO S, MYOJIN K, e alt. Nonlinear optical properties of ferroelectric liquid crystal [J]. Ferroelectrics, 1997, 196(1): 297-303. doi: 10.1080/00150199708224183http://dx.doi.org/10.1080/00150199708224183
LIU J Y, ROBINSON M G, JOHNSON K M, e alt. Second-harmonic generation in ferroelectric liquid crystals [J]. Optics Letters, 1990, 15(5): 267-269. doi: 10.1364/ol.15.000267http://dx.doi.org/10.1364/ol.15.000267
HARTMANN W J A M. Ferroelectric liquid crystal displays for television application [J]. Ferroelectrics, 1991, 122(1): 1-26. doi: 10.1080/00150199108226025http://dx.doi.org/10.1080/00150199108226025
KASANO M, OZAKI M, YOSHINO K, e alt. Electrically tunable waveguide laser based on ferroelectric liquid crystal [J]. Applied Physics Letters, 2003, 82(23): 4026-4028. doi: 10.1063/1.1580992http://dx.doi.org/10.1063/1.1580992
LAGERWALL S T, DAHL I. Ferroelectric liquid crystals [J]. Molecular Crystals and Liquid Crystals, 1984, 114(1/3): 151-187. doi: 10.1080/00268948408071706http://dx.doi.org/10.1080/00268948408071706
GOODBY J W, LESLIE T M. Ferroelectric liquid crystals-structure and design [J]. Molecular Crystals and Liquid Crystals, 1984, 110(1/4): 175-203. doi: 10.1080/00268948408074505http://dx.doi.org/10.1080/00268948408074505
LAGERWALL S T. Ferroelectric and antiferroelectric liquid crystals [J]. Ferroelectrics, 2004, 301(1): 15-45. doi: 10.1080/00150190490464827http://dx.doi.org/10.1080/00150190490464827
TAKEZOE H. Polar liquid crystals-ferro, antiferro, banana, and columnar-[J]. Molecular Crystals and Liquid Crystals, 2017, 646(1): 46-65. doi: 10.1080/15421406.2017.1284377http://dx.doi.org/10.1080/15421406.2017.1284377
CLARK N A, LAGERWALL S T. Submicrosecond bistable electro‐optic switching in liquid crystals [J]. Applied Physics Letters, 1980, 36(11): 899-901. doi: 10.1063/1.91359http://dx.doi.org/10.1063/1.91359
HIKMET R A M, MICHIELSEN M. Anisotropic network stabilized ferroelectric gels [J]. Advanced Materials, 1995, 7(3): 300-304. doi: 10.1002/adma.19950070313http://dx.doi.org/10.1002/adma.19950070313
NISHIKAWA H, SHIROSHITA K, HIGUCHI H, e alt. A fluid liquid-crystal material with highly polar order [J]. Advanced Materials, 2017, 29(43): 1702354. doi: 10.1002/adma.201702354http://dx.doi.org/10.1002/adma.201702354
MANDLE R J, COWLING S J, GOODBY J W. A nematic to nematic transformation exhibited by a rod-like liquid crystal [J]. Physical Chemistry Chemical Physics, 2017, 19(18): 11429-11435. doi: 10.1039/c7cp00456ghttp://dx.doi.org/10.1039/c7cp00456g
LAVRENTOVICH O D. Ferroelectric nematic liquid crystal, a century in waiting [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(26): 14629-14631. doi: 10.1073/pnas.2008947117http://dx.doi.org/10.1073/pnas.2008947117
PIERANSKI P, GUYON E, KELLER P. Shear flow induced polarization in ferroelectric smectics C [J]. Journal de Physique, 1975, 36(10): 1005-1010. doi: 10.1051/jphys:0197500360100100500http://dx.doi.org/10.1051/jphys:0197500360100100500
MEYER R B. Ferroelectric liquid crystals: a review [J]. Molecular Crystals and Liquid Crystals, 1977, 40(1): 33-48.
薛九枝.铁电液晶显示[J].现代显示,1994(2):10-24,9.
XUE J Z. Ferroelectric liquid crystals display [J]. Advanced Display, 1994(2): 10-24, 9. (in Chinese)
唐先柱,邹忠飞,宣丽.聚合温度及铁电液晶有序度对单体转化率的影响[J].光子学报,2010,39(1):29-32. doi: 10.3788/gzxb20103901.0029http://dx.doi.org/10.3788/gzxb20103901.0029
TANG X Z, ZOU Z F, XUAN L. Effects of polymerization temperature and orientation order of ferroelectric liquid crystal on monomer conversion rate [J]. Acta Photonica Sinica, 2010, 39(1): 29-32. (in Chinese). doi: 10.3788/gzxb20103901.0029http://dx.doi.org/10.3788/gzxb20103901.0029
GUO Q, YAN K X, CHIGRINOV V, e alt. Ferroelectric liquid crystals: physics and applications [J]. Crystals, 2019, 9(9): 470. doi: 10.3390/cryst9090470http://dx.doi.org/10.3390/cryst9090470
SRIVASTAVA A K, CHIGRINOV V G, KWOK H S. Ferroelectric liquid crystals: excellent tool for modern displays and photonics [J]. Journal of the Society for Information Display, 2015, 23(6): 253-272. doi: 10.1002/jsid.370http://dx.doi.org/10.1002/jsid.370
WANG M Y, PAN W, LUO B, e alt. An improved equivalent circuit model and the dependence of hysteresis inversion frequency on typical parameters of V-shaped switching SSFLC cells for both bookshelf and chevron structures [J]. Liquid Crystals, 2008, 35(3): 373-379. doi: 10.1080/02678290801902549http://dx.doi.org/10.1080/02678290801902549
THOMPSON M P, LEMIEUX R P. Chiral induction in nematic and smectic C liquid crystal phases by dopants with axially chiral 1,11-dimethyl-5,7-dihydrodibenz[c,e]thiepin cores [J]. Journal of Materials Chemistry, 2007, 17(48): 5068-5076. doi: 10.1039/b712253ehttp://dx.doi.org/10.1039/b712253e
TERENTJEV E M, OSIPOV M A, SLUCKIN T J. Ferroelectric instability in semiflexible liquid crystalline polymers of directed dipolar chains [J]. Journal of Physics A: Mathematical and General, 1994, 27(21): 7047-7059. doi: 10.1088/0305-4470/27/21/019http://dx.doi.org/10.1088/0305-4470/27/21/019
FURUKAWA T, TAKEZOE H, NISHI T, e alt. Shg-active films formed from uniaxial and biaxial nematic liquid crystals with polar ordering [J]. Molecular Crystals and Liquid Crystals Science and Technology, Section A: Molecular Crystals and Liquid Crystals, 1997, 299(1): 105-109.
WATANABE T, MIYATA S, FURUKAWA T, e alt. Nematic liquid crystals with polar ordering formed from simple aromatic polyester [J]. Japanese Journal of Applied Physics, 1996, 35(4B): L505-L507. doi: 10.1143/jjap.35.l505http://dx.doi.org/10.1143/jjap.35.l505
LEE J, LEE S D. Ferroelectric liquid crystalline ordering of rigid rods with dipolar interactions [J]. Molecular Crystals and Liquid Crystals Science and Technology, Section A: Molecular Crystals and Liquid Crystals, 1994, 254(1): 395-403.
PALFFY-MUHORAY P, LEE M A, PETSCHEK R G. Ferroelectric nematic liquid crystals: realizability and molecular constraints [J]. Physical Review Letters, 1988, 60(22): 2303-2306. doi: 10.1103/physrevlett.60.2303http://dx.doi.org/10.1103/physrevlett.60.2303
YU C J, YU M, LEE S D. Phase diagram for ferroelectric nematic ordering of hard spherocylinders with longitudinal dipoles [J]. Japanese Journal of Applied Physics, 2002, 41(2A): L102-L104. doi: 10.1143/jjap.41.l102http://dx.doi.org/10.1143/jjap.41.l102
PARK B, WU J W, TAKEZOE H. Generalized mean-field potential description for ferroelectric ordering in nematic liquid crystals [J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2001, 63(2 Pt 1): 021707. doi: 10.1103/physreve.63.021707http://dx.doi.org/10.1103/physreve.63.021707
TAKAE K, TANAKA H. Self-organization into ferroelectric and antiferroelectric crystals via the interplay between particle shape and dipolar interaction [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(40): 9917-9922. doi: 10.1073/pnas.1809004115http://dx.doi.org/10.1073/pnas.1809004115
TAKEZOE H, WATANABE J. Ferroelectricity in liquid crystals [J]. Molecular Crystals and Liquid Crystals Science and Technology, Section A: Molecular Crystals and Liquid Crystals, 1999, 328(1): 325-332.
MANDLE R J, MERTELJ A. Orientational order in the splay nematic ground state [J]. Physical Chemistry Chemical Physics, 2019, 21(34): 18769-18772. doi: 10.1039/c9cp03581hhttp://dx.doi.org/10.1039/c9cp03581h
SEBASTIÁN N, CMOK L, MANDLE R J, e alt. Ferroelectric-ferroelastic phase transition in a nematic liquid crystal [J]. Physical Review Letters, 2020, 124(3): 037801. doi: 10.1103/physrevlett.124.037801http://dx.doi.org/10.1103/physrevlett.124.037801
MERTELJ A, CMOK L, SEBASTIÁN N, e alt. Splay nematic phase [J]. Physical Review X, 2018, 8(4): 041025. doi: 10.1103/physrevx.8.041025http://dx.doi.org/10.1103/physrevx.8.041025
CHEN X, KORBLOVA E, DONG D P, e alt. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-optics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 14021-14031. doi: 10.1073/pnas.2002290117http://dx.doi.org/10.1073/pnas.2002290117
ZHAO X H, ZHOU J C, LI J X, e alt. Spontaneous helielectric nematic liquid crystals: electric analog to helimagnets [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(42): e2111101118. doi: 10.1073/pnas.2111101118http://dx.doi.org/10.1073/pnas.2111101118
MANDLE R J, COWLING S J, GOODBY J W. Rational design of rod-like liquid crystals exhibiting two nematic phases [J]. Chemistry—A European Journal, 2017, 23(58): 14554-14562.
MANDLE R J, COWLING S J, GOODBY J W. Structural variants of RM734 in the design of splay nematic materials [J]. Liquid Crystals, 2021, 48(12): 1780-1790. doi: 10.1080/02678292.2021.1934740http://dx.doi.org/10.1080/02678292.2021.1934740
MANABE A, BREMER M, KRASKA M. Ferroelectric nematic phase at and below room temperature [J]. Liquid Crystals, 2021, 48(8): 1079-1086. doi: 10.1080/02678292.2021.1921867http://dx.doi.org/10.1080/02678292.2021.1921867
LI J X, NISHIKAWA H, KOUGO J, e alt. Development of ferroelectric nematic fluids with giant-ε dielectricity and nonlinear optical properties [J]. Science Advances, 2021, 7(17): eabf5047. doi: 10.1126/sciadv.abf5047http://dx.doi.org/10.1126/sciadv.abf5047
MANDLE R J, SEBASTIÁN N, MARTINEZ-PERDIGUERO J, e alt. On the molecular origins of the ferroelectric splay nematic phase [J]. Nature Communications, 2021, 12(1): 4962. doi: 10.1038/s41467-021-25231-0http://dx.doi.org/10.1038/s41467-021-25231-0
LI J X, XIA R L, XU H, e alt. How far can we push the rigid oligomers/polymers toward ferroelectric nematic liquid crystals? [J]. Journal of the American Chemical Society, 2021, 143(42): 17857-17861. doi: 10.1021/jacs.1c09594http://dx.doi.org/10.1021/jacs.1c09594
CHEN X, MARTINEZ V, KORBLOVA E, e alt. Antiferroelectric smectic ordering as a prelude to the ferroelectric nematic: introducing the smectic ZA phase [J]. arXiv, 2021:2112.14222.
CAIMI F, NAVA G, BARBOZA R, e alt. Surface alignment of ferroelectric nematic liquid crystals [J]. Soft Matter, 2021, 17(35): 8130-8139. doi: 10.1039/d1sm00734chttp://dx.doi.org/10.1039/d1sm00734c
CHEN X, KORBLOVA E, GLASER M A, e alt. Polar in-plane surface orientation of a ferroelectric nematic liquid crystal: polar monodomains and twisted state electro-optics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(22): e2104092118. doi: 10.1073/pnas.2104092118http://dx.doi.org/10.1073/pnas.2104092118
RUDQUIST P. Revealing the polar nature of a ferroelectric nematic by means of circular alignment [J]. Scientific Reports, 2021, 11(1): 24411. doi: 10.1038/s41598-021-04028-7http://dx.doi.org/10.1038/s41598-021-04028-7
TU M, HUANG Y X. Laser light scattering technique for non-invasive in situ simultaneous measurements on elastic constants and viscosity coefficients of nematic liquid crystals [J]. Science in China Series G: Physics, Mechanics and Astronomy, 2004, 47(1): 79-85. doi: 10.1360/03yw0143http://dx.doi.org/10.1360/03yw0143
HOSHIMURA T. Displays for business machines: operation liquid crystal displays of photocopier machines [J]. Displays, 2002, 23(1/2): 25-29. doi: 10.1016/s0141-9382(02)00006-9http://dx.doi.org/10.1016/s0141-9382(02)00006-9
YEH P, GU C. Symmetry of viewing characteristics of liquid crystal displays with compensators [J]. Displays, 2000, 21(1): 31-38. doi: 10.1016/s0141-9382(00)00025-1http://dx.doi.org/10.1016/s0141-9382(00)00025-1
ERICKSEN J L. Conservation laws for liquid crystals [J]. Transactions of the Society of Rheology, 1961, 5(1): 23-34. doi: 10.1122/1.548883http://dx.doi.org/10.1122/1.548883
ERICKSEN J L. Inequalities in liquid crystal theory [J]. The physics of Fluids, 1966, 9(6): 1205-1207. doi: 10.1063/1.1761821http://dx.doi.org/10.1063/1.1761821
LESLIE F M. Some constitutive equations for liquid crystals [J]. Archive for Rational Mechanics and Analysis, 1968, 28(4): 265-283. doi: 10.1007/bf00251810http://dx.doi.org/10.1007/bf00251810
LESLIE F M. Theory of flow phenomena in liquid crystals [J]. Advances in Liquid Crystals, 1979, 4: 1-81. doi: 10.1016/b978-0-12-025004-2.50008-9http://dx.doi.org/10.1016/b978-0-12-025004-2.50008-9
PARODI O. Stress tensor for a nematic liquid crystal [J]. Journal de Physique, 1970, 31(7): 581-584. doi: 10.1051/jphys:01970003107058100http://dx.doi.org/10.1051/jphys:01970003107058100
FRÉEDERICKSZ V, REPIEWA A. Theoretisches und experimentelles zur frage nach der natur der anisotropen Flüssigkeiten [J]. Zeitschrift für Physik, 1927, 42(7): 532-546. doi: 10.1007/bf01397711http://dx.doi.org/10.1007/bf01397711
FRÉEDERICKSZ V, ZOLINA V. Forces causing the orientation of an anisotropic liquid [J]. Transactions of the Faraday Society, 1933, 29(140): 919-930. doi: 10.1039/tf9332900919http://dx.doi.org/10.1039/tf9332900919
BELYAEV V V. Physical methods for measuring the viscosity coefficients of nematic liquid crystals [J]. Physics-Uspekhi, 2001, 44(3): 255-284. doi: 10.1070/pu2001v044n03abeh000831http://dx.doi.org/10.1070/pu2001v044n03abeh000831
JIN L, LI F, ZHANG S J. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures [J]. Journal of the American Ceramic Society, 2014, 97(1): 1-27. doi: 10.1111/jace.12773http://dx.doi.org/10.1111/jace.12773
NISHIKAWA H, ARAOKA F. A new class of chiral nematic phase with helical polar order [J]. Advanced Materials, 2021, 33(35): 2101305. doi: 10.1002/adma.202101305http://dx.doi.org/10.1002/adma.202101305
KEMNITZ K, BHATTACHARYYA K, HICKS J M, e alt. The phase of second-harmonic light generated at an interface and its relation to absolute molecular orientation [J]. Chemical Physics Letters, 1986, 131(4/5): 285-290. doi: 10.1016/0009-2614(86)87152-4http://dx.doi.org/10.1016/0009-2614(86)87152-4
0
浏览量
317
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构