
浏览全部资源
扫码关注微信
1.陕西科技大学 电子信息与人工智能学院, 陕西 西安 710021
2.中国科学院 国家天文台, 北京 100101
3.西安石油大学 理学院, 陕西 西安 710065
[ "周乐(1999—),女,陕西渭南人,硕士研究生,2020年于陕西科技大学获得学士学位,主要从事图像处理、图像超分辨等方面的研究。E-mail:luoluo3664@sust.edu.cn" ]
[ "张选德(1979—),男,宁夏固原人,博士,教授,2013年于西安电子科技大学获得博士学位,主要从事图像恢复、图像质量评价、视觉追踪、多光谱图像处理等方面的研究。E-mail: zhangxuande@sust.edu.cn" ]
收稿日期:2022-03-11,
修回日期:2022-03-26,
纸质出版日期:2022-10-05
移动端阅览
周乐, 徐龙, 刘孝艳, 等. 基于梯度感知的单幅图像超分辨[J]. 液晶与显示, 2022,37(10):1334-1344.
Le ZHOU, Long XU, Xiao-yan LIU, et al. Gradient-aware based single image super-resolution[J]. Chinese journal of liquid crystals and displays, 2022, 37(10): 1334-1344.
周乐, 徐龙, 刘孝艳, 等. 基于梯度感知的单幅图像超分辨[J]. 液晶与显示, 2022,37(10):1334-1344. DOI: 10.37188/CJLCD.2022-0083.
Le ZHOU, Long XU, Xiao-yan LIU, et al. Gradient-aware based single image super-resolution[J]. Chinese journal of liquid crystals and displays, 2022, 37(10): 1334-1344. DOI: 10.37188/CJLCD.2022-0083.
随着生成对抗网络在图像超分辨(SR)领域的应用,一些感知驱动的SR方法可以恢复出纹理细节更加丰富的SR图像,有效地缓解了由PSNR主导的SR方法导致重建图像趋于平滑的问题。然而梯度信息作为图像纹理的一种重要表现形式,鲜有SR方法能准确、高效地利用。为此,提出一种基于梯度感知的图像超分辨(GASR)算法,可以更准确地利用梯度信息。一方面,使用梯度域的特征图作为作用在图像域特征图上的卷积核,有效地避免了不同域特征图串联所带来的域冲突问题;另一方面,通过对卷积核尺寸等设计细节的调整使两个分支对应位置所输出的图像域与梯度域特征图的感受野一致。此外,由于实际应用对网络轻量化需求的提高,提出的GASR算法还有效降低了参数量和计算量。与同样利用梯度信息的SPSR相比,GASR最终以约1/6的参数量与1/10的计算量取得了与其相近的性能。在Set14数据集上,LPIPS与PSNR分别提升了0.002 2与0.217。实验结果验证了GASR可以在纹理生成与图像平滑度之间取得一个很好的平衡,视觉化效果也验证了GASR不仅可以准确地恢复SR图像,而且在一定程度上缓解了杂乱纹理的生成。
With the application of generative adversarial networks in the field of image super-resolution (SR), some perception-driven SR methods can recover SR images with richer texture details, effectively alleviating the over-smoothing problem of the PSNR dominated SR methods. Gradient information is an important representation of image texture. However, few SR methods can make use of this information accurately and efficiently. In this paper, a gradient-aware single image super-resolution(GASR) is proposed, using gradient information better from two aspects. On the one hand, the feature map of gradient domain is used as the convolution kernel imposing on the feature map of image domain, which can effectively avoid the domain conflict caused by the concatenation of feature map of different domains. On the other hand, by elaborating the network details such as convolution kernel size,
etc
., the image fields output at the corresponding positions of the two branches are consistent with the feel fields of the feature maps in the gradient domain. In addition, the proposed GASR algorithm also effectively reduces the number of parameters and the amount of computation due to the increased demand for network lightweight in practical applications. Compared to SPSR, GASR can achieve the same performance at the cost of about 1/6 of the parameters and 1/10 of the computation of SPSR. On Set14 dataset, LPIPS and PSNR increase by 0.002 2 and 0.217, respectively. The experimental results show that GASR can achieve a good trade-off between texture details and image smoothness. In addition, GASR can not only reconstruct high fidelity SR image, but also alleviate the generation of messy textures.
刘涛 , 钱锋 , 张葆 . 遥感图像的MAP超分辨重建 [J]. 液晶与显示 , 2018 , 33 ( 10 ): 884 - 892 . doi: 10.3788/yjyxs20183310.0884 http://dx.doi.org/10.3788/yjyxs20183310.0884
LIU T , QIAN F , ZHANG B . MAP super-resolution reconstruction of remote sensing image [J]. Chinese Journal of Liquid Crystals and Displays , 2018 , 33 ( 10 ): 884 - 892 . (in Chinese) . doi: 10.3788/yjyxs20183310.0884 http://dx.doi.org/10.3788/yjyxs20183310.0884
DONG C , LOY C C , HE K M , et al . Learning a deep convolutional network for image super-resolution [C]// Proceedings of the 13th European Conference on Computer Vision . Zurich : Springer , 2014 : 184 - 199 . doi: 10.1007/978-3-319-10593-2_13 http://dx.doi.org/10.1007/978-3-319-10593-2_13
LEDIG C , THEIS L , HUSZÁR F , et al . Photo-realistic single image super-resolution using a generative adversarial network [C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition . Honolulu : IEEE , 2017 : 105 - 114 . doi: 10.1109/cvpr.2017.19 http://dx.doi.org/10.1109/cvpr.2017.19
MA C , RAO Y M , CHENG Y A , et al . Structure-preserving super resolution with gradient guidance [C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle : IEEE , 2020 : 7766 - 7775 . doi: 10.1109/cvpr42600.2020.00779 http://dx.doi.org/10.1109/cvpr42600.2020.00779
JOHNSON J , ALAHI A , LI F F . Perceptual losses for real-time style transfer and super-resolution [C]// Proceedings of the 14th European Conference on Computer Vision . Amsterdam : Springer , 2016 : 694 - 711 . doi: 10.1007/978-3-319-46475-6_43 http://dx.doi.org/10.1007/978-3-319-46475-6_43
KIM J , LEE J K , LEE K M . Accurate image super-resolution using very deep convolutional networks [C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas : IEEE , 2016 : 1646 - 1654 . doi: 10.1109/cvpr.2016.182 http://dx.doi.org/10.1109/cvpr.2016.182
ZHANG K , ZUO W M , CHEN Y J , et al . Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising [J]. IEEE Transactions on Image Processing , 2017 , 26 ( 7 ): 3142 - 3155 . doi: 10.1109/tip.2017.2662206 http://dx.doi.org/10.1109/tip.2017.2662206
DONG C , LOY C C , TANG X O . Accelerating the super-resolution convolutional neural network [C]// Proceedings of the 14th European Conference on Computer Vision . Amsterdam : Springer , 2016 : 391 - 407 . doi: 10.1007/978-3-319-46475-6_25 http://dx.doi.org/10.1007/978-3-319-46475-6_25
ZHANG Y L , LI K P , LI K , et al . Image super-resolution using very deep residual channel attention networks [C]// Proceedings of the 15th European Conference on Computer Vision . Munich : Springer , 2018 : 294 - 310 . doi: 10.1007/978-3-030-01234-2_18 http://dx.doi.org/10.1007/978-3-030-01234-2_18
ZHANG Y L , TIAN Y P , KONG Y , et al . Residual dense network for image super-resolution [C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City : IEEE , 2018 : 2472 - 2481 . doi: 10.1109/cvpr.2018.00262 http://dx.doi.org/10.1109/cvpr.2018.00262
LIU J , ZHANG W J , TANG Y T , et al . Residual feature aggregation network for image super-resolution [C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle : IEEE , 2020 : 2356 - 2365 . doi: 10.1109/cvpr42600.2020.00243 http://dx.doi.org/10.1109/cvpr42600.2020.00243
GOODFELLOW I J , POUGET-ABADIE J , MIRZA M , et al . Generative adversarial nets [C]// Proceedings of the 27th International Conference on Neural Information Processing Systems . Montreal : MIT Press , 2014 : 2672 - 2680 .
WANG X T , YU K , WU S X , et al . ESRGAN: enhanced super-resolution generative adversarial networks [C]// Proceedings of European Conference on Computer Vision . Munich : Springer , 2018 : 63 - 79 . doi: 10.1007/978-3-030-11021-5_5 http://dx.doi.org/10.1007/978-3-030-11021-5_5
KONG X T , ZHAO H Y , QIAO Y , et al . ClassSR: a general framework to accelerate super-resolution networks by data characteristic [C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville : IEEE , 2021 : 12011 - 12020 . doi: 10.1109/cvpr46437.2021.01184 http://dx.doi.org/10.1109/cvpr46437.2021.01184
SONG D H , WANG Y H , CHEN H T , et al . Addersr: towards energy efficient image super-resolution [C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville : IEEE , 2021 : 15643 - 15652 . doi: 10.1109/cvpr46437.2021.01539 http://dx.doi.org/10.1109/cvpr46437.2021.01539
WANG L G , DONG X Y , WANG Y Q , et al . Exploring sparsity in image super-resolution for efficient inference [C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville : IEEE , 2021 : 4915 - 4924 . doi: 10.1109/cvpr46437.2021.00488 http://dx.doi.org/10.1109/cvpr46437.2021.00488
AGUSTSSON E , TIMOFTE R . NTIRE 2017 challenge on single image super-resolution: dataset and study [C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops . Honolulu : IEEE , 2017 : 1122 - 1131 . doi: 10.1109/cvprw.2017.150 http://dx.doi.org/10.1109/cvprw.2017.150
ZEYDE R , ELAD M , PROTTER M . On single image scale-up using sparse-representations [C]// Proceedings of the 7th International Conference on Curves and Surfaces . Avignon : Springer , 2010 : 711 - 730 .
MARTIN D , FOWLKES C , TAL D , et al . A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics [C]// Proceedings of the Eighth IEEE International Conference on Computer Vision . Vancouver : IEEE , 2001 : 416 - 423 .
BLAU Y , MECHREZ R , TIMOFTE R , et al . The 2018 PIRM challenge on perceptual image super-resolution [C]// Proceedings of European Conference on Computer Vision . Munich : Springer , 2018 : 334 - 355 . doi: 10.1007/978-3-030-11021-5_21 http://dx.doi.org/10.1007/978-3-030-11021-5_21
ZHANG R , ISOLA P , EFROS A A , et al . The unreasonable effectiveness of deep features as a perceptual metric [C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City : IEEE , 2018 : 586 - 595 . doi: 10.1109/cvpr.2018.00068 http://dx.doi.org/10.1109/cvpr.2018.00068
WANG Z , BOVIK A C , SHEIKH H R , et al . Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing , 2004 , 13 ( 4 ): 600 - 612 . doi: 10.1109/tip.2003.819861 http://dx.doi.org/10.1109/tip.2003.819861
KINGMA D P , BA J . Adam: a method for stochastic optimization [J]. arXiv , 2014 : 1412 .6980.
WANG X T , YU K , DONG C , et al . Recovering realistic texture in image super-resolution by deep spatial feature transform [C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City : IEEE , 2018 : 606 - 615 . doi: 10.1109/cvpr.2018.00070 http://dx.doi.org/10.1109/cvpr.2018.00070
SAJJADI M S M , SCHÖLKOPF B , HIRSCH M . Enhancenet: single image super-resolution through automated texture synthesis [C]// Proceedings of 2017 IEEE International Conference on Computer Vision . Venice : IEEE , 2017 : 4501 - 4510 . doi: 10.1109/iccv.2017.481 http://dx.doi.org/10.1109/iccv.2017.481
ZHANG K , VAN GOOL L , TIMOFTE R . Deep unfolding network for image super-resolution [C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle : IEEE , 2020 : 3214 - 3223 . doi: 10.1109/cvpr42600.2020.00328 http://dx.doi.org/10.1109/cvpr42600.2020.00328
CAI J R , ZENG H , YONG H W , et al . Toward real-world single image super-resolution: a new benchmark and a new model [C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision . Seoul : IEEE , 2019 : 3086 - 3095 . doi: 10.1109/iccv.2019.00318 http://dx.doi.org/10.1109/iccv.2019.00318
0
浏览量
213
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621