1.北京航空航天大学 仪器科学与光电工程学院, 北京 100191
[ "储 繁(1998—),男,安徽安庆人,博士后,2020年于四川大学获得博士学位,主要从事液晶显示和液晶透镜方向的研究。E-mail:chufan@buaa.edu.cn" ]
[ "王琼华(1969—),女,四川巴中人,博士,教授,2001年于电子科技大学获得博士学位,主要从事显示与成像方向的研究。E-mail:qionghua@buaa.edu.cn" ]
扫 描 看 全 文
储繁, 王琼华. 基于聚合物突起的液晶透镜阵列[J]. 液晶与显示, 2023,38(1):10-17.
CHU Fan, WANG Qiong-Hua. Liquid crystal lens array based on polymer protrusion[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):10-17.
储繁, 王琼华. 基于聚合物突起的液晶透镜阵列[J]. 液晶与显示, 2023,38(1):10-17. DOI: 10.37188/CJLCD.2022-0065.
CHU Fan, WANG Qiong-Hua. Liquid crystal lens array based on polymer protrusion[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):10-17. DOI: 10.37188/CJLCD.2022-0065.
提出了一种基于聚合物突起液晶透镜阵列。该液晶透镜阵列的周期性聚合物突起上镀有氧化铟锡透明电极,利用介电层抹平相剖面,通电状态下在液晶层内部产生沿透镜孔径呈线性变化的垂直电场,在液晶层内形成了呈中心对称的梯度折射率分布,从而使液晶层对入射光线有聚焦作用。优化后的液晶透镜阵列采用较薄的液晶层,大幅缩短了液晶透镜阵列的响应时间。所提液晶透镜阵列具有工作电压较低、电极简单、基板内部侧平面化和液晶层厚度均匀等优点。仿真结果表明,通过改变驱动电压,该液晶透镜阵列的焦距可以从无穷大连续调节到1.28 mm。
A liquid crystal (LC) lens array based on polymer protrusion is proposed. The indium tin oxide (ITO) electrodes are coated on periodic polymer protrusion, a dielectric layer is used for flattening phase profile, and the vertical electric field across the LC layer varies linearly over the lens aperture, which is obtained in the voltage-on state. As a result, a centrosymmetric gradient refractive index profile within the LC layer is generated, which causes the focusing behavior. As a result of the optimization, a thin cell gap which greatly reduces the switching time of the LC lens array can be achieved in our design. The main advantages of the proposed LC lens array are in the comparatively low operating voltage, the flat substrate surface, the simple electrodes, and the uniform LC cell gap. The simulation results show that the focal length of the LC lens array can be tuned continuously from infinity to 1.28 mm by changing the applied voltage.
液晶透镜聚合物突起介电层短焦距
liquid crystal lenspolymer protrusiondielectric layershort focal length
STAPERT H R, DEL VALLE S, VERSTEGEN E J K, et al. Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs [J]. Advanced Functional Materials, 2003, 13(9): 732-738. doi: 10.1002/adfm.200304385http://dx.doi.org/10.1002/adfm.200304385
SMITH P J, TAYLOR C M, MCCABE E M, et al. Switchable fiber coupling using variable-focal-length microlenses [J]. Review of Scientific Instruments, 2001, 72(7): 3132-3134. doi: 10.1063/1.1380391http://dx.doi.org/10.1063/1.1380391
FU Y Q, BRYAN N K A. Design of hybrid micro-diffractive-refractive optical element with wide field of view for free space optical interconnections [J]. Optics Express, 2002, 10(13): 540-549. doi: 10.1364/oe.10.000540http://dx.doi.org/10.1364/oe.10.000540
HIDDINK M G H, DE ZWART S T, WILLEMSEN Q H, et al. Locally switchable 3D displays [J]. SID Symposium Digest of Technical Papers, 2006, 37(1): 1142-1145. doi: 10.1889/1.2433178http://dx.doi.org/10.1889/1.2433178
XIN Z W, WEI D, XIE X W, et al. Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation [J]. Optics Express, 2018, 26(4): 4035-4049. doi: 10.1364/oe.26.004035http://dx.doi.org/10.1364/oe.26.004035
HUANG Y P, CHEN C W, SHEN T C, et al. Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) Lens [J]. 3D Research, 2010, 1(1): 39-42. doi: 10.1007/3dres.01(2010)5http://dx.doi.org/10.1007/3dres.01(2010)5
MCMANAMON P F, DORSCHNER T A, CORKUM D L, et al. Optical phased array technology [J]. Proceedings of the IEEE, 1996, 84(2): 268-298. doi: 10.1109/5.482231http://dx.doi.org/10.1109/5.482231
RIZA N A, DEJULE M C. Three-terminal adaptive nematic liquid-crystal lens device [J]. Optics Letters, 1994, 19(14): 1013-1015. doi: 10.1364/ol.19.001013http://dx.doi.org/10.1364/ol.19.001013
LIN H C, CHEN M S, LIN Y H. A review of electrically tunable focusing liquid crystal lenses [J]. Transactions on Electrical and Electronic Materials, 2011, 12(6): 234-240. doi: 10.4313/teem.2011.12.6.234http://dx.doi.org/10.4313/teem.2011.12.6.234
NOSE T, MASUDA S, SATO S. Optical properties of a liquid crystal microlens with a symmetric electrode structure [J]. Japanese Journal of Applied Physics, 1991, 30(12B): L2110-L2112. doi: 10.1143/jjap.30.l2110http://dx.doi.org/10.1143/jjap.30.l2110
CUI J P, FAN H X, WANG Q H. A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure [J]. Liquid Crystals, 2017, 44(4): 643-647. doi: 10.1080/02678292.2016.1226973http://dx.doi.org/10.1080/02678292.2016.1226973
LIN Y H, WANG Y J, RESHETNYAK V. Liquid crystal lenses with tunable focal length [J]. Liquid Crystals Review, 2017, 5(2): 111-143. doi: 10.1080/21680396.2018.1440256http://dx.doi.org/10.1080/21680396.2018.1440256
HUANG Y P, CHEN C W, SHEN T C. High resolution autostereoscopic 3D display with scanning multi-electrode driving liquid crystal (MeD-LC) Lens [J]. SID Symposium Digest of Technical Papers, 2009, 40(1): 336-339. doi: 10.1889/1.3256780http://dx.doi.org/10.1889/1.3256780
KAO Y Y, CHAO P C P, HSUEH C W. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths [J]. Optics Express, 2010, 18(18): 18506-18518. doi: 10.1364/oe.18.018506http://dx.doi.org/10.1364/oe.18.018506
DOU H, CHU F, SONG Y L, et al. A multifunctional blue phase liquid crystal lens based on multi-electrode structure [J]. Liquid Crystals, 2018, 45(4): 491-497. doi: 10.1080/02678292.2017.1355988http://dx.doi.org/10.1080/02678292.2017.1355988
LEE Y J, BAEK J H, KIM Y, et al. Polarizer-free liquid crystal display with electrically switchable microlens array [J]. Optics Express, 2013, 21(1): 129-134. doi: 10.1364/oe.21.000129http://dx.doi.org/10.1364/oe.21.000129
DOU H, CHU F, GUO Y Q, et al. Large aperture liquid crystal lens array using a composited alignment layer [J]. Optics Express, 2018, 26(7): 9254-9262. doi: 10.1364/oe.26.009254http://dx.doi.org/10.1364/oe.26.009254
TIAN L L, CHU F, DOU H, et al. Short-focus nematic liquid crystal microlens array with a dielectric layer [J]. Liquid Crystals, 2020, 47(1): 76-82. doi: 10.1080/02678292.2019.1630491http://dx.doi.org/10.1080/02678292.2019.1630491
LI Y, WU S T. Polarization independent adaptive microlens with a blue-phase liquid crystal [J]. Optics Express, 2011, 19(9): 8045-8050. doi: 10.1364/oe.19.008045http://dx.doi.org/10.1364/oe.19.008045
LI Y, HUANG S J, ZHOU P C, et al. Polymer-stabilized blue phase liquid crystals for photonic applications [J]. Advanced Materials Technologies, 2016, 1(8): 1600102. doi: 10.1002/admt.201600102http://dx.doi.org/10.1002/admt.201600102
CHU F, DOU H, LI G P, et al. A polarisation-independent blue-phase liquid crystal lens array using gradient electrodes [J]. Liquid Crystals, 2018, 45(5): 715-720. doi: 10.1080/02678292.2017.1376127http://dx.doi.org/10.1080/02678292.2017.1376127
CHU F, DOU H, TIAN L L, et al. Polarisation-independent blue-phase liquid crystal microlens array with different dielectric layer [J]. Liquid Crystals, 2019, 46(8): 1273-1279. doi: 10.1080/02678292.2018.1550221http://dx.doi.org/10.1080/02678292.2018.1550221
DOU H, CHU F, WANG L, et al. A polarization-free blue phase liquid crystal lens with enhanced tunable focal length range [J]. Liquid Crystals, 2019, 46(6): 963-969.
HUANG C, ZHANG Q. Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites [J]. Advanced Functional Materials, 2004, 14(5): 501-506. doi: 10.1002/adfm.200305021http://dx.doi.org/10.1002/adfm.200305021
LU J X, MOON K S, KIM B K, et al. High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications [J]. Polymer, 2007, 48(6): 1510-1516. doi: 10.1016/j.polymer.2007.01.057http://dx.doi.org/10.1016/j.polymer.2007.01.057
FARAG A A M, ASHERY A, RAFEA M A. Optical dispersion and electronic transition characterizations of spin coated polyaniline thin films [J]. Synthetic Metals, 2010, 160(1/2): 156-161. doi: 10.1016/j.synthmet.2009.10.024http://dx.doi.org/10.1016/j.synthmet.2009.10.024
LIU J L, MA H M, SUN Y B. Blue-phase liquid crystal display with high dielectric material [J]. Liquid Crystals, 2016, 43(12): 1748-1752. doi: 10.1080/02678292.2016.1199056http://dx.doi.org/10.1080/02678292.2016.1199056
GUO Y Q, WANG Y F, ZHANG C, et al. Blue-phase liquid crystal display with insulating protrusion [J]. Liquid Crystals, 2018, 45(11): 1585-1593. doi: 10.1080/02678292.2018.1456570http://dx.doi.org/10.1080/02678292.2018.1456570
LIN Y H, CHEN H S. Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications [J]. Optics Express, 2013, 21(8): 9428-9436. doi: 10.1364/oe.21.009428http://dx.doi.org/10.1364/oe.21.009428
REN H W, WU S T. Introduction to Adaptive Lenses [M]. Hoboken: John Wiley & Son, 2012. doi: 10.1002/9781118270080http://dx.doi.org/10.1002/9781118270080
0
浏览量
208
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构