
浏览全部资源
扫码关注微信
苏州大学 光电科学与工程学院, 江苏 苏州 215006
[ "夏仲文(1998—),男,浙江宁波人,博士研究生,2020年于湘潭大学获得学士学位,主要从事新型显示及裸眼3D显示方面的研究。E-mail:zhongwensummer@163.com" ]
[ "乔文(1984—),女,江西南昌人,博士,教授,2013年于美国加州大学圣迭戈分校获得博士学位,主要从事微纳制造、微纳光学等方面的研究。E-mail:wqiao@suda.edu.cn" ]
收稿日期:2022-01-30,
修回日期:2022-03-12,
纸质出版日期:2022-05-05
移动端阅览
夏仲文, 华鉴瑜, 陈林森, 等. 基于微纳光子器件的光场裸眼3D显示技术[J]. 液晶与显示, 2022,37(5):562-572.
Zhong-wen XIA, Jian-yu HUA, Lin-sen CHEN, et al. Light field glasses-free three-dimensional display technology based on micro-nano photonic devices[J]. Chinese journal of liquid crystals and displays, 2022, 37(5): 562-572.
夏仲文, 华鉴瑜, 陈林森, 等. 基于微纳光子器件的光场裸眼3D显示技术[J]. 液晶与显示, 2022,37(5):562-572. DOI: 10.37188/CJLCD.2022-0043.
Zhong-wen XIA, Jian-yu HUA, Lin-sen CHEN, et al. Light field glasses-free three-dimensional display technology based on micro-nano photonic devices[J]. Chinese journal of liquid crystals and displays, 2022, 37(5): 562-572. DOI: 10.37188/CJLCD.2022-0043.
裸眼3D显示是“元宇宙”的入口,是可以重新定义人机交互方式的变革性技术。经过百余年发展,裸眼3D显示已取得显著进步,但仍然存在视场角小、分辨率下降严重、运动视差受限和视疲劳等问题。光场裸眼3D显示本质上是多视角光场调控技术和方法研究。最近研究表明,微纳光子器件(衍射光栅、衍射透镜、超表面等)对光的强度、相位、偏振等参量具有灵活而精确的调控能力,有望解决裸眼3D显示长期存在的难题。然而,数英寸至上百英寸显示幅面的微纳光子器件在设计与制备层面都面临巨大挑战。本文具体分析了基于几何光学的裸眼3D显示局限性,从器件设计和微纳制备两方面详细介绍了基于平面光学的裸眼3D显示最新研究进展。最后总结了裸眼3D显示的未来发展方向和潜在应用领域。
Glasses-free three-dimensional (3D) display is the gateway to the “metaverse” and it is a transformative technology that can redefine the way human interact with information. After more than a hundred years’ development, glasses-free 3D display has made significant progress, but there are still a bunch of problems, such as limited field of view (FOV), severe resolution degradation, limited movement parallax and visual fatigue. Recent studies have shown that micro/nano photonic devices (diffractive gratings, diffractive lens and metasurfaces) have flexible and accurate manipulating capability on the intensity, phase, polarization and other parameters of lightwave. It is expected that nanophotonics can solve the intrinsic bottleneck of glasses-free 3D display. However, micro-nano photonic devices face significant challenges at both the design and fabrication levels. In this paper, the limitations of glasses-free 3D display based on geometric optics are analyzed, and the latest research progress of glasses-free 3D display based on planar optics is introduced in detail from the aspects of device design and micro-nano fabrication. Finally, we highlight the future direction and potential applications of glasses-free 3D display.
WHEATSTONE C . Contributions to the physiology of vision.Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision [J]. Philosophical Transactions , 1838 , 128 : 371 - 394 .
FRATZ M , SEYLER T , BERTZ A , et al . Digital holography in production: an overview [J]. Light: Advanced Manufacturing , 2021 , 2 ( 2 ): 283 - 295, . doi: 10.37188/lam.2021.015 http://dx.doi.org/10.37188/lam.2021.015
GENG J . Three-dimensional display technologies [J]. Advances in Optics and Photonics , 2013 , 5 ( 4 ): 456 - 535 . doi: 10.1364/aop.5.000456 http://dx.doi.org/10.1364/aop.5.000456
BLANCHE P A . Holography, and the future of 3D display [J]. Light: Advanced Manufacturing , 2021 , 2 : 28 . doi: 10.37188/lam.2021.028 http://dx.doi.org/10.37188/lam.2021.028
DODGSON N A . Autostereoscopic 3D displays [J]. Computer , 2005 , 38 ( 8 ): 31 - 36 . doi: 10.1109/mc.2005.252 http://dx.doi.org/10.1109/mc.2005.252
MA Q G CAO L C , HE Z H , et al . Progress of three-dimensional light-field display [J]. Chinese Optics Letters , 2019 , 17 ( 11 ): 111001 . doi: 10.3788/col201917.111001 http://dx.doi.org/10.3788/col201917.111001
HUANG T Q , HAN B X , ZHANG X R , et al . High-performance autostereoscopic display based on the lenticular tracking method [J]. Optics Express , 2019 , 27 ( 15 ): 20421 - 20434 . doi: 10.1364/oe.27.020421 http://dx.doi.org/10.1364/oe.27.020421
KIM S U , KIM J , SUH J H , et al . Concept of active parallax barrier on polarizing interlayer for near-viewing autostereoscopic displays [J]. Optics Express , 2016 , 24 ( 22 ): 25010 - 25018 . doi: 10.1364/oe.24.025010 http://dx.doi.org/10.1364/oe.24.025010
LV G J , ZHAO B C , WU F , et al . Autostereoscopic 3D display with high brightness and low crosstalk [J]. Applied Optics , 2017 , 56 ( 10 ): 2792 - 2795 . doi: 10.1364/ao.56.002792 http://dx.doi.org/10.1364/ao.56.002792
YOON S K , KHYM S , KIM H W , et al . Variable parallax barrier spacing in autostereoscopic displays [J]. Optics Communications , 2016 , 370 : 319 - 326 . doi: 10.1016/j.optcom.2016.03.028 http://dx.doi.org/10.1016/j.optcom.2016.03.028
LV G J , WANG Q H , ZHAO W X , et al . Glasses-free three-dimensional display based on microsphere-lens array [J]. Journal of Display Technology , 2015 , 11 ( 3 ): 292 - 295 . doi: 10.1109/jdt.2014.2385098 http://dx.doi.org/10.1109/jdt.2014.2385098
王琼华 , 潘冬冬 , 李大海 , 等 . 狭缝光栅自由立体显示器的立体图像串扰度 [J]. 光电子·激光 , 2010 , 21 ( 7 ): 1058 - 1061.2010.07.027 .
WANG Q H , PAN D D , LI D H , et al . Stereoscopic image crosstalk factor for auto-stereoscopic display based on parallax barrier [J]. Journal of Optoelectronics·Laser , 2010 , 21 ( 7 ): 1058 - 1061 .
LIANG H W , AN S Z , WANG J H , et al . Optimizing time-multiplexing auto-stereoscopic displays with a genetic algorithm [J]. Journal of Display Technology , 2014 , 10 ( 8 ): 695 - 699 . doi: 10.1109/jdt.2014.2314138 http://dx.doi.org/10.1109/jdt.2014.2314138
MARTÍNEZ-CORRAL M , JAVIDI B . Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems [J]. Advances in Optics and Photonics , 2018 , 10 ( 3 ): 512 - 566 . doi: 10.1364/aop.10.000512 http://dx.doi.org/10.1364/aop.10.000512
JAVIDI B , CARNICER A , ARAI J , et al . Roadmap on 3D integral imaging: sensing, processing, and display [J]. Optics Express , 2020 , 28 ( 22 ): 32266 - 32293 . doi: 10.1364/oe.402193 http://dx.doi.org/10.1364/oe.402193
ZHAO Z F , LIU J , ZHANG Z Q , et al . Bionic-compound-eye structure for realizing a compact integral imaging 3D display in a cell phone with enhanced performance [J]. Optics Letters , 2020 , 45 ( 6 ): 1491 - 1494 . doi: 10.1364/ol.384182 http://dx.doi.org/10.1364/ol.384182
WATANABE H , OKAICHI N , SASAKI H , et al . Pixel-density and viewing-angle enhanced integral 3D display with parallel projection of multiple UHD elemental images [J]. Optics Express , 2020 , 28 ( 17 ): 24731 - 24746 . doi: 10.1364/oe.397647 http://dx.doi.org/10.1364/oe.397647
LIU B Y , SANG X Z , YU X B , et al . Time-multiplexed light field display with 120-degree wide viewing angle [J]. Optics Express , 2019 , 27 ( 24 ): 35728 - 35739 . doi: 10.1364/oe.27.035728 http://dx.doi.org/10.1364/oe.27.035728
LANMAN D , WETZSTEIN G , HIRSCH M , et al . Polarization fields: dynamic light field display using multi-layer LCDs [J]. ACM Transactions on Graphics , 2011 , 30 ( 6 ): 186 . doi: 10.1145/2070781.2024220 http://dx.doi.org/10.1145/2070781.2024220
WETZSTEIN G , LANMAN D , HEIDRICH W , et al . Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays [J]. ACM Transactions on Graphics , 2011 , 30 ( 4 ): 95 . doi: 10.1145/2010324.1964990 http://dx.doi.org/10.1145/2010324.1964990
WETZSTEIN G , LANMAN D , HIRSCH M , et al . Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting [J]. ACM Transactions on Graphics , 2012 , 31 ( 4 ): 80 . doi: 10.1145/2185520.2185576 http://dx.doi.org/10.1145/2185520.2185576
LANMAN D , HIRSCH M , KIM Y , et al . Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization [J]. ACM Transactions on Graphics , 2010 , 29 ( 6 ): 163 . doi: 10.1145/1882261.1866164 http://dx.doi.org/10.1145/1882261.1866164
MAIMONE A , WETZSTEIN G , HIRSCH M , et al . Focus 3D: compressive accommodation display [J]. ACM Transactions on Graphics , 2013 , 32 ( 5 ): 153 . doi: 10.1145/2503144 http://dx.doi.org/10.1145/2503144
乔文 , 周冯斌 , 陈林森 . 距离移动电子设备有多远?裸眼3D显示现状与展望 [J]. 红外与激光工程 , 2020 , 49 ( 3 ): 0303002 . doi: 10.3788/irla202049.0303002 http://dx.doi.org/10.3788/irla202049.0303002
QIAO W , ZHOU F B , CHEN L S . Towards application of mobile devices: the status and future of glasses-free 3D display [J]. Infrared and Laser Engineering , 2020 , 49 ( 3 ): 0303002 . (in Chinese) . doi: 10.3788/irla202049.0303002 http://dx.doi.org/10.3788/irla202049.0303002
CHEN Z G , SEGEV M . Highlighting photonics: looking into the next decade [J]. eLight , 2021 , 1 : 2 . doi: 10.1186/s43593-021-00002-y http://dx.doi.org/10.1186/s43593-021-00002-y
XIONG J H , WU S T . Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications [J]. eLight , 2021 , 1 : 3 . doi: 10.1186/s43593-021-00003-x http://dx.doi.org/10.1186/s43593-021-00003-x
GENEVET P , CAPASSO F , AIETA F , et al . Recent advances in planar optics: from plasmonic to dielectric metasurfaces [J]. Optica , 2017 , 4 ( 1 ): 139 - 152 . doi: 10.1364/optica.4.000139 http://dx.doi.org/10.1364/optica.4.000139
ZHANG Y , FANG F Z . Development of planar diffractive waveguides in optical see-through head-mounted displays [J]. Precision Engineering , 2019 , 60 : 482 - 496 . doi: 10.1016/j.precisioneng.2019.09.009 http://dx.doi.org/10.1016/j.precisioneng.2019.09.009
TABIRYAN N V , ROBERTS D E , LIAO Z , et al . Advances in transparent planar optics: enabling large aperture, ultrathin lenses [J]. Advanced Optical Materials , 2021 , 9 ( 5 ): 2001692 . doi: 10.1002/adom.202001692 http://dx.doi.org/10.1002/adom.202001692
GERSHUN A . The light field [J]. Journal of Mathematics and Physics , 1939 , 18 ( 1/4 ): 51 - 151 . doi: 10.1002/sapm193918151 http://dx.doi.org/10.1002/sapm193918151
MOON P , SPENCER D E . The Photic Field [M]. Cambridge : MIT Press , 1981 .
ADELSON E H , BERGEN J R . The plenoptic function and the elements of early vision [M]//LANDY F M, MOVSHON J A. Computational Models of Visual Processing . Cambridge : MIT Press , 1991 : 3 - 20 . doi: 10.7551/mitpress/2002.003.0004 http://dx.doi.org/10.7551/mitpress/2002.003.0004
MCMILLAN L , BISHOP G . Plenoptic modeling: an image-based rendering system [C]// Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques . Los Angeles : ACM Press , 1995 : 39 - 46 . doi: 10.1145/218380.218398 http://dx.doi.org/10.1145/218380.218398
LEVOY M , HANRAHAN P . Light field rendering [C]// Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques . New Orleans : ACM , 1996 : 31 - 42 . doi: 10.1145/237170.237199 http://dx.doi.org/10.1145/237170.237199
GÖRRN P , LEHNHARDT M , KOWALSKY W , et al . Elastically tunable self-organized organic lasers [J]. Advanced Materials , 2011 , 23 ( 7 ): 869 - 872 . doi: 10.1002/adma.201003108 http://dx.doi.org/10.1002/adma.201003108
LIU Z Y , CUI Q Y , HUANG Z H , et al . Transparent colored display enabled by flat glass waveguide and nanoimprinted multilayer gratings [J]. ACS Photonics , 2020 , 7 ( 6 ): 1418 - 1424 . doi: 10.1021/acsphotonics.9b01803 http://dx.doi.org/10.1021/acsphotonics.9b01803
ZHANG L Z , SUN G T , BAI J , et al . Realizing dynamic diffraction gratings based on light-direct writing of responsive 2D ordered patterns [J]. ACS Materials Letters , 2020 , 2 ( 9 ): 1135 - 1141 . doi: 10.1021/acsmaterialslett.0c00285 http://dx.doi.org/10.1021/acsmaterialslett.0c00285
ZOLA R S , BISOYI H K , WANG H , et al . Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings [J]. Advanced Materials , 2019 , 31 ( 7 ): 1806172 . doi: 10.1002/adma.201806172 http://dx.doi.org/10.1002/adma.201806172
CAO Y Y , WANG P X , D’ACIERNO F , et al . Tunable diffraction gratings from biosourced lyotropic liquid crystals [J]. Advanced Materials , 2020 , 32 ( 19 ): 1907376 . doi: 10.1002/adma.201907376 http://dx.doi.org/10.1002/adma.201907376
ORCUTT M . MIT technology review [EB/OL]. [ 2013-09-21 ]. https://www.technologyreview.com/innovator/david-fattal https://www.technologyreview.com/innovator/david-fattal .
WAN W Q , QIAO W , HUANG W B , et al . Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD [J]. Optics Express , 2017 , 25 ( 2 ): 1114 - 1122 . doi: 10.1364/oe.25.001114 http://dx.doi.org/10.1364/oe.25.001114
WAN W Q , QIAO W , PU D L , et al . Holographic sampling display based on metagratings [J]. iScience , 2020 , 23 ( 1 ): 100773 . doi: 10.1016/j.isci.2019.100773 http://dx.doi.org/10.1016/j.isci.2019.100773
WAN W Q , QIAO W , PU D L , et al . Super multi-view display based on pixelated nanogratings under an illumination of a point light source [J]. Optics and Lasers in Engineering , 2020 , 134 : 106258 . doi: 10.1016/j.optlaseng.2020.106258 http://dx.doi.org/10.1016/j.optlaseng.2020.106258
HUANG K , QIN F , LIU H , et al . Planar diffractive lenses: fundamentals, functionalities, and applications [J]. Advanced Materials , 2018 , 30 ( 26 ): 1704556 . doi: 10.1002/adma.201704556 http://dx.doi.org/10.1002/adma.201704556
BANERJI S , MEEM M , MAJUMDER A , et al . Imaging with flat optics: metalenses or diffractive lenses? [J]. Optica , 2019 , 6 ( 6 ): 805 - 810 . doi: 10.1364/optica.6.000805 http://dx.doi.org/10.1364/optica.6.000805
FLEMING M B , HUTLEY M C . Blazed diffractive optics [J]. Applied Optics , 1997 , 36 ( 20 ): 4635 - 4643 . doi: 10.1364/ao.36.004635 http://dx.doi.org/10.1364/ao.36.004635
SWEENEY D W , SOMMARGREN G E . Harmonic diffractive lenses [J]. Applied Optics , 1995 , 34 ( 14 ): 2469 - 2475 . doi: 10.1364/ao.34.002469 http://dx.doi.org/10.1364/ao.34.002469
FAKLIS D , MORRIS G M . Spectral properties of multiorder diffractive lenses [J]. Applied Optics , 1995 , 34 ( 14 ): 2462 - 2468, . doi: 10.1364/ao.34.002462 http://dx.doi.org/10.1364/ao.34.002462
BANERJI S , MEEM M , MAJUMDER A , et al . Extreme-depth-of-focus imaging with a flat lens [J]. Optica , 2020 , 7 ( 3 ): 214 - 217 . doi: 10.1364/optica.384164 http://dx.doi.org/10.1364/optica.384164
ZHOU F , HUA J Y , SHI J C , et al . Pixelated blazed gratings for high brightness multiview holographic 3D display [J]. IEEE Photonics Technology Letters , 2020 , 32 ( 5 ): 283 - 286 . doi: 10.1109/lpt.2020.2971147 http://dx.doi.org/10.1109/lpt.2020.2971147
ZHOU F B , ZHOU F , CHEN Y , et al . Vector light field display based on an intertwined flat lens with large depth of focus [J]. Optica , 2022 , 9 ( 3 ): 288 - 294 . doi: 10.1364/optica.439613 http://dx.doi.org/10.1364/optica.439613
HUA J Y , YI D H , QIAO W , et al . Multiview holographic 3D display based on blazed Fresnel DOE [J]. Optics Communications , 2020 , 472 : 125829 . doi: 10.1016/j.optcom.2020.125829 http://dx.doi.org/10.1016/j.optcom.2020.125829
JIANG Q , JIN G F , CAO L C . When metasurface meets hologram: principle and advances [J]. Advances in Optics and Photonics , 2019 , 11 ( 3 ): 518 - 576 . doi: 10.1364/aop.11.000518 http://dx.doi.org/10.1364/aop.11.000518
SHELBY R A , SMITH D R , SCHULTZ S . Experimental verification of a negative index of refraction [J]. Science , 2001 , 292 ( 5514 ): 77 - 79 . doi: 10.1126/science.1058847 http://dx.doi.org/10.1126/science.1058847
VALENTINE J , ZHANG S , ZENTGRAF T , et al . Three-dimensional optical metamaterial with a negative refractive index [J]. Nature , 2008 , 455 ( 7211 ): 376 - 379 . doi: 10.1038/nature07247 http://dx.doi.org/10.1038/nature07247
ZHOU Y , QIN Z , LIANG Z Z , et al . Ultra-broadband metamaterial absorbers from long to very long infrared regime [J]. Light: Science & Applications , 2021 , 10 ( 1 ): 138 . doi: 10.1038/s41377-021-00577-8 http://dx.doi.org/10.1038/s41377-021-00577-8
QIAN Q Y , SUN T , YAN Y , et al . Large-area wide-incident-angle metasurface perfect absorber in total visible band based on coupled Mie resonances [J]. Advanced Optical Materials , 2017 , 5 ( 13 ): 1700064 . doi: 10.1002/adom.201700064 http://dx.doi.org/10.1002/adom.201700064
ERGIN T , STENGER N , BRENNER P , et al . Three-dimensional invisibility cloak at optical wavelengths [J]. Science , 2010 , 328 ( 5976 ): 337 - 339 . doi: 10.1126/science.1186351 http://dx.doi.org/10.1126/science.1186351
KHORASANINEJAD M , CHEN W T , DEVLIN R C , et al . Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging [J]. Science , 2016 , 352 ( 6290 ): 1190 - 1194 . doi: 10.1126/science.aaf6644 http://dx.doi.org/10.1126/science.aaf6644
CHEN W T , ZHU A Y , SANJEEV V , et al . A broadband achromatic metalens for focusing and imaging in the visible [J]. Nature Nanotechnology , 2018 , 13 ( 3 ): 220 - 226 . doi: 10.1038/s41565-017-0034-6 http://dx.doi.org/10.1038/s41565-017-0034-6
HUANG L L , ZHANG S , ZENTGRAF T . Metasurface holography: from fundamentals to applications [J]. Nanophotonics , 2018 , 7 ( 6 ): 1169 - 1190 . doi: 10.1515/nanoph-2017-0118 http://dx.doi.org/10.1515/nanoph-2017-0118
ZHENG G X , MÜHLENBERND H , KENNEY M , et al . Metasurface holograms reaching 80% efficiency [J]. Nature Nanotechnology , 2015 , 10 ( 4 ): 308 - 312 . doi: 10.1038/nnano.2015.2 http://dx.doi.org/10.1038/nnano.2015.2
FARAJI-DANA M , ARBABI E , ARBABI A , et al . Compact folded metasurface spectrometer [J]. Nature Communications , 2018 , 9 ( 1 ): 4196 . doi: 10.1038/s41467-018-06495-5 http://dx.doi.org/10.1038/s41467-018-06495-5
ZHU A Y , CHEN W T , KHORASANINEJAD M , et al . Ultra-compact visible chiral spectrometer with meta-lenses [J]. APL Photonics , 2017 , 2 ( 3 ): 036103 . doi: 10.1063/1.4974259 http://dx.doi.org/10.1063/1.4974259
ZHANG Y C , LIU W W , GAO J , et al . Generating focused 3D perfect vortex beams by plasmonic metasurfaces [J]. Advanced Optical Materials , 2018 , 6 ( 4 ): 1701228 . doi: 10.1002/adom.201701228 http://dx.doi.org/10.1002/adom.201701228
YUE F Y , WEN D D , XIN J T , et al . Vector vortex beam generation with a single plasmonic metasurface [J]. ACS Photonics , 2016 , 3 ( 9 ): 1558 - 1563 . doi: 10.1021/acsphotonics.6b00392 http://dx.doi.org/10.1021/acsphotonics.6b00392
HUANG L L , CHEN X Z , MÜHLENBERND H , et al . Three-dimensional optical holography using a plasmonic metasurface [J]. Nature Communications , 2013 , 4 ( 1 ): 2808 . doi: 10.1038/ncomms3808 http://dx.doi.org/10.1038/ncomms3808
FAN Z B , QIU H Y , ZHANG H L , et al . A broadband achromatic metalens array for integral imaging in the visible [J]. Light: Science & Applications , 2019 , 8 : 67 . doi: 10.1038/s41377-019-0178-2 http://dx.doi.org/10.1038/s41377-019-0178-2
HUA J Y , HUA E K , ZHOU F B , et al . Foveated glasses-free 3D display with ultrawide field of view via a large-scale 2D-metagrating complex [J]. Light: Science & Applications , 2021 , 10 ( 1 ): 213 . doi: 10.1038/s41377-021-00651-1 http://dx.doi.org/10.1038/s41377-021-00651-1
WAN W Q , QIAO W , HUANG W B , et al . Efficient fabrication method of nano-grating for 3D holographic display with full parallax views [J]. Optics Express , 2016 , 24 ( 6 ): 6203 - 6212 . doi: 10.1364/oe.24.006203 http://dx.doi.org/10.1364/oe.24.006203
TING C H , CHANG Y C , CHEN C H , et al . Multi-user 3D film on a time-multiplexed side-emission backlight system [J]. Applied Optics , 2016 , 55 ( 28 ): 7922 - 7928 . doi: 10.1364/ao.55.007922 http://dx.doi.org/10.1364/ao.55.007922
HWANG Y S , BRUDER F K , FÄCKE T , et al . Time-sequential autostereoscopic 3-D display with a novel directional backlight system based on volume-holographic optical elements [J]. Optics Express , 2014 , 22 ( 8 ): 9820 - 9838 . doi: 10.1364/oe.22.009820 http://dx.doi.org/10.1364/oe.22.009820
XIA X X , ZHANG X Y , ZHANG L , et al . Time-multiplexed multi-view three-dimensional display with projector array and steering screen [J]. Optics Express , 2018 , 26 ( 12 ): 15528 - 15538 . doi: 10.1364/oe.26.015528 http://dx.doi.org/10.1364/oe.26.015528
PHILLIPS D B , SUN M J , TAYLOR J M , et al . Adaptive foveated single-pixel imaging with dynamic supersampling [J]. Science Advances , 2017 , 3 ( 4 ): e1601782 . doi: 10.1126/sciadv.1601782 http://dx.doi.org/10.1126/sciadv.1601782
YOO C , XIONG J H , MOON S , et al . Foveated display system based on a doublet geometric phase lens [J]. Optics Express , 2020 , 28 ( 16 ): 23690 - 23702 . doi: 10.1364/oe.399808 http://dx.doi.org/10.1364/oe.399808
CHANG C L , CUI W , GAO L . Foveated holographic near-eye 3D display [J]. Optics Express , 2020 , 28 ( 2 ): 1345 - 1356 . doi: 10.1364/oe.384421 http://dx.doi.org/10.1364/oe.384421
ZENG T J , ZHU Y M , LAM E Y . Deep learning for digital holography: a review [J]. Optics Express , 2021 , 29 ( 24 ): 40572 - 40593 . doi: 10.1364/oe.443367 http://dx.doi.org/10.1364/oe.443367
FAN H , ZHOU Y G , WANG J H , et al . Full resolution, low crosstalk, and wide viewing angle auto-stereoscopic display with a hybrid spatial-temporal control using free-form surface backlight unit [J]. Journal of Display Technology , 2015 , 11 ( 7 ): 620 - 624 . doi: 10.1109/jdt.2015.2425432 http://dx.doi.org/10.1109/jdt.2015.2425432
YOON H , OH S G , KANG D S , et al . Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays [J]. Nature Communications , 2011 , 2 : 455 . doi: 10.1038/ncomms1456 http://dx.doi.org/10.1038/ncomms1456
KREBS P , LIANG H W , FAN H , et al . Homogeneous free-form directional backlight for 3D display [J]. Optics Communications , 2017 , 397 : 112 - 117 . doi: 10.1016/j.optcom.2017.04.002 http://dx.doi.org/10.1016/j.optcom.2017.04.002
ZHAN L L , LI M G , XU B , et al . Directional backlight 3D display system with wide-dynamic-range view zone, high brightness and switchable 2D/3D [J]. Journal of Display Technology , 2016 , 12 ( 12 ): 1710 - 1714 . doi: 10.1109/jdt.2016.2609198 http://dx.doi.org/10.1109/jdt.2016.2609198
TENG T C , TSENG L W . Design of a bidirectional backlight using a pair of stacked light guide plates for large dual-view and 3D displays [J]. Applied Optics , 2015 , 54 ( 3 ): 509 - 516 . doi: 10.1364/ao.54.000509 http://dx.doi.org/10.1364/ao.54.000509
ZHANG Y L , YI D H , QIAO W , et al . Directional backlight module based on pixelated nano-gratings [J]. Optics Communications , 2020 , 459 : 125034 . doi: 10.1016/j.optcom.2019.125034 http://dx.doi.org/10.1016/j.optcom.2019.125034
AN J , WON K , KIM Y , et al . Slim-panel holographic video display [J]. Nature Communications , 2020 , 11 ( 1 ): 5568 . doi: 10.1038/s41467-020-19298-4 http://dx.doi.org/10.1038/s41467-020-19298-4
QIAO W , HUANG W B , LIU Y H , et al . Toward scalable flexible nanomanufacturing for photonic structures and devices [J]. Advanced Materials , 2016 , 28 ( 47 ): 10353 - 10380 . doi: 10.1002/adma.201601801 http://dx.doi.org/10.1002/adma.201601801
WU X M , QIAO W , ZHU M , et al . Roll-to-plate additive manufacturing [J]. Optics Express , 2021 , 29 ( 14 ): 21833 - 21843 . doi: 10.1364/oe.426984 http://dx.doi.org/10.1364/oe.426984
CHEN Y F . Nanofabrication by electron beam lithography and its applications: a review [J]. Microelectronic Engineering , 2015 , 135 : 57 - 72 . doi: 10.1016/j.mee.2015.02.042 http://dx.doi.org/10.1016/j.mee.2015.02.042
MANFRINATO V R , ZHANG L H , SU D , et al . Resolution limits of electron-beam lithography toward the atomic scale [J]. Nano Letters , 2013 , 13 ( 4 ): 1555 - 1558 . doi: 10.1021/nl304715p http://dx.doi.org/10.1021/nl304715p
MANFRINATO V R , WEN J G , ZHANG L H , et al . Determining the resolution limits of electron-beam lithography: direct measurement of the point-spread function [J]. Nano Letters , 2014 , 14 ( 8 ): 4406 - 4412 . doi: 10.1021/nl5013773 http://dx.doi.org/10.1021/nl5013773
HUANG Y G , HSIANG E L , DENG M Y , et al . Mini-LED, Micro-LED and OLED displays: present status and future perspectives [J]. Light: Science & Applications , 2020 , 9 : 105 . doi: 10.1038/s41377-020-0341-9 http://dx.doi.org/10.1038/s41377-020-0341-9
LIU Z J , LIN C H , HYUN B R , et al . Micro-light-emitting diodes with quantum dots in display technology [J]. Light: Science & Applications , 2020 , 9 : 83 . doi: 10.1038/s41377-020-0268-1 http://dx.doi.org/10.1038/s41377-020-0268-1
0
浏览量
843
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621