1.东南大学 智能材料研究院, 江苏 南京 211189
2.东南大学 化学化工学院, 江苏 南京 211189
[ "黄银亮(1994—),男,河南开封人,博士研究生,2019年于安徽大学获得硕士学位,主要从事智能软材料的研究。E-mail:230198666@seu.edu.cn" ]
[ "黄 帅(1991—),男,江苏如东人,博士,副研究员,2019年于北京大学获得博士学位,主要从事液晶聚合物功能材料的研究。E-mail:huangshuai1991@seu.edu.cn" ]
扫 描 看 全 文
黄银亮, 孙俊杰, 黄帅, 等. 基于可编辑颜色和形状记忆液晶网络的信息存储材料[J]. 液晶与显示, 2023,38(1):49-59.
HUANG Yin-liang, SUN Jun-jie, HUANG Shuai, et al. Information storage materials based on liquid crystalline networks with programmable colors and shape memory[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):49-59.
黄银亮, 孙俊杰, 黄帅, 等. 基于可编辑颜色和形状记忆液晶网络的信息存储材料[J]. 液晶与显示, 2023,38(1):49-59. DOI: 10.37188/CJLCD.2022-0023.
HUANG Yin-liang, SUN Jun-jie, HUANG Shuai, et al. Information storage materials based on liquid crystalline networks with programmable colors and shape memory[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):49-59. DOI: 10.37188/CJLCD.2022-0023.
近年来,液晶网络材料因为在人工肌肉、软体机器人、微流控制器和4D打印材料等智能软器件领域的应用受到了越来越多的关注。液晶网络材料在化学结构上同时包含聚合物交联网络和液晶基元,在性能上同时具有聚合物的可加工性、化学稳定性和力学特性以及液晶可调的各向异性,因此具有外观易编辑、功能可调、对多种刺激都能响应等优点。利用这些特点,可以将指定的形状或颜色信息精确地写入到材料中,同时在特定外界刺激(光,热,电场,溶剂等)下使信息再次显现,实现信息的存储、加密与读取。本文简要论述了具有可编辑颜色(包括结构色和荧光颜色)和形状记忆的液晶网络材料的信息存储方式,重点介绍了液晶网络材料在伪装、多级信息存储与信息传递等方面的应用研究进展。
Liquid crystalline networks have attracted more and more interest in recent years because of the potential application in artificial muscles, soft robotics, microfluidics, 4D printing, ,etc., Since their chemical structures contain the cross-linked networks and mesogens endowing them with good processability, stability and mechanical performance of polymers along with the adjustable orientation of liquid crystal molecules, the liquid crystalline networks usually have the advantages such as editable appearance, tunable function, and responsiveness to diverse stimuli. Thus, shape and color information can be accurately written into the material, which will reappear under specific external stimulus (,e.g.,, light, heat, electric field, and solvent), thus can realize the storage, encryption and reading of information. This review briefly discusses the information storage mechanism based on liquid crystalline networks with manipulatable color (,e.g.,, structural color and fluorescence) and shape memory. Their applications in camouflage, multi-level information storage and information transmission are also summarized.
液晶网络形状记忆可编辑颜色信息存储
liquid crystalline networkshape memoryprogrammable colorinformation storage
LI Q. Intelligent Stimuli-Responsive Materials: From Well-Defined Nanostructures to Applications [M]. Hoboken: John Wiley & Sons, 2013. doi: 10.1002/9781118680469http://dx.doi.org/10.1002/9781118680469
BISOYI H K, LI Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications [J]. Chemical Reviews, 2016, 116(24): 15089-15166. doi: 10.1021/acs.chemrev.6b00415http://dx.doi.org/10.1021/acs.chemrev.6b00415
YU H F, IKEDA T. Photocontrollable liquid-crystalline actuators [J]. Advanced Materials, 2011, 23(19): 2149-2180. doi: 10.1002/adma.201100131http://dx.doi.org/10.1002/adma.201100131
BISOYI H K, LI Q. Liquid crystals: versatile self-organized smart soft materials [J]. Chemical Reviews, 2022, 122(5): 4887-4926.
BISOYI H K, LI Q. Light-directing chiral liquid crystal nanostructures: from 1D to 3D [J]. Accounts of Chemical Research, 2014, 47(10): 3184-3195. doi: 10.1021/ar500249khttp://dx.doi.org/10.1021/ar500249k
CHEN L J, LI Y N, FAN J, et al. Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch [J]. Advanced Optical Materials, 2014, 2(9): 845-848. doi: 10.1002/adom.201400166http://dx.doi.org/10.1002/adom.201400166
LI Q. Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications [M]. Hoboken: John Wiley & Sons, 2012. doi: 10.1002/9781118259993http://dx.doi.org/10.1002/9781118259993
QIN L, LIU X J, HE K Y, et al. Geminate labels programmed by two-tone microdroplets combining structural and fluorescent color [J]. Nature Communications, 2021, 12(1): 699. doi: 10.1038/s41467-021-20908-yhttp://dx.doi.org/10.1038/s41467-021-20908-y
HUANG S, HUANG Y L, LI Q. Photodeformable liquid crystalline polymers containing functional additives: toward photomanipulatable intelligent soft systems [J]. Small Structures 2021, 2(9): 2100038. doi: 10.1002/sstr.202100038http://dx.doi.org/10.1002/sstr.202100038
QIN L, LIU X J, YU Y L. Soft actuators of liquid crystal polymers fueled by light from ultraviolet to near infrared [J]. Advanced Optical Materials, 2021, 9(7): 2001743. doi: 10.1002/adom.202001743http://dx.doi.org/10.1002/adom.202001743
HUANG S, SHEN Y K, BISOYI H K, et al. Covalent adaptable liquid crystal networks enabled by reversible ring-opening cascades of cyclic disulfides [J]. Journal of the American Chemical Society, 2021, 143(32): 12543-12551. doi: 10.1021/jacs.1c03661http://dx.doi.org/10.1021/jacs.1c03661
王猛,马丹阳,王成杰.近红外光响应液晶弹性体[J].化学进展,2020,32(10):1452-1461. doi: 10.7536/PC200335http://dx.doi.org/10.7536/PC200335
WANG M, MA D Y, WANG C J. Near-infrared light responsive liquid crystal elastomers [J]. Progress in Chemistry, 2020, 32(10): 1452-1461. (in Chinese). doi: 10.7536/PC200335http://dx.doi.org/10.7536/PC200335
YANG J J, ZHANG X F, ZHANG X, et al. Beyond the visible: bioinspired infrared adaptive materials [J]. Advanced Materials, 2021, 33(14): 2004754. doi: 10.1002/adma.202004754http://dx.doi.org/10.1002/adma.202004754
HUANG Y L, BISOYI H K, HUANG S, et al. Bioinspired synergistic photochromic luminescence and programmable liquid crystal actuators [J]. Angewandte Chemie International Edition, 2021, 60(20): 11247-11251. doi: 10.1002/anie.202101881http://dx.doi.org/10.1002/anie.202101881
MCBRIDE M K, MARTINEZ A M, COX L, et al. A readily programmable, fully reversible shape-switching material [J]. Science Advances, 2018, 4(8): eaat4634. doi: 10.1126/sciadv.aat4634http://dx.doi.org/10.1126/sciadv.aat4634
GLADMAN A S, MATSUMOTO E A, NUZZO R G, et al. Biomimetic 4D printing [J]. Nature Materials, 2016, 15(4): 413-418. doi: 10.1038/nmat4544http://dx.doi.org/10.1038/nmat4544
LU H F, WANG M, CHEN X M, et al. Interpenetrating liquid-crystal polyurethane/polyacrylate elastomer with ultrastrong mechanical property [J]. Journal of the American Chemical Society, 2019, 141(36): 14364-14369. doi: 10.1021/jacs.9b06757http://dx.doi.org/10.1021/jacs.9b06757
WANG Z J, CAI S Q. Recent progress in dynamic covalent chemistries for liquid crystal elastomers [J]. Journal of Materials Chemistry B, 2020, 8(31): 6610-6623. doi: 10.1039/d0tb00754dhttp://dx.doi.org/10.1039/d0tb00754d
LV J A, LIU Y Y, WEI J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators [J]. Nature, 2016, 537(7619): 179-184. doi: 10.1038/nature19344http://dx.doi.org/10.1038/nature19344
LIU Q, LIU Y Y, LV J A, et al. Photocontrolled liquid transportation in microtubes by manipulating mesogen orientations in liquid crystal polymers [J]. Advanced Intelligent Systems, 2019, 1(6): 1900060. doi: 10.1002/aisy.201900060http://dx.doi.org/10.1002/aisy.201900060
AMBULO C P, TASMIM S, WANG S T, et al. Processing advances in liquid crystal elastomers provide a path to biomedical applications [J]. Journal of Applied Physics, 2020, 128(14): 140901. doi: 10.1063/5.0021143http://dx.doi.org/10.1063/5.0021143
KOTIKIAN A, TRUBY R L, BOLEY J W, et al. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order [J]. Advanced Materials, 2018, 30(10): 1706164. doi: 10.1002/adma.201706164http://dx.doi.org/10.1002/adma.201706164
翟飞,封伟.4D打印液晶弹性体软体机器人及其热致运动行为[J].应用化学,2021,38(10):1389-1396. doi: 10.1016/j.matt.2021.08.014http://dx.doi.org/10.1016/j.matt.2021.08.014
ZHAI F, FENG W. 4D printed liquid crystal elastomer soft robot and its thermal derived motion behavior [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1389-1396. (in Chinese). doi: 10.1016/j.matt.2021.08.014http://dx.doi.org/10.1016/j.matt.2021.08.014
LIAO J Q, YANG M, LIU Z, et al. Fast photoinduced deformation of hydrogen-bonded supramolecular polymers containing α-cyanostilbene derivative [J]. Journal of Materials Chemistry A, 2019, 7(5): 2002-2008. doi: 10.1039/c8ta12030ghttp://dx.doi.org/10.1039/c8ta12030g
LIU Z, LIAO J Q, HE L F, et al. Preparation, photo-induced deformation behavior and application of hydrogen-bonded crosslinked liquid crystalline elastomers based on α-cyanostilbene [J]. Polymer Chemistry, 2020, 11(37): 6047-6055. doi: 10.1039/d0py01060jhttp://dx.doi.org/10.1039/d0py01060j
LIU Z, HE L F, GUI Q, et al. Preparation, property manipulation and application of ɑ-cyanostilbene-containing photoresponsive liquid crystal elastomers with different alkoxy tail length [J]. European Polymer Journal, 2021, 147: 110332. doi: 10.1016/j.eurpolymj.2021.110332http://dx.doi.org/10.1016/j.eurpolymj.2021.110332
MIYAGI K, TERAMOTO Y. Dual mechanochromism of cellulosic cholesteric liquid-crystalline films: wide-ranging colour control and circular dichroism inversion by mechanical stimulus [J]. Journal of Materials Chemistry C, 2018, 6(6): 1370-1376. doi: 10.1039/c7tc05092ehttp://dx.doi.org/10.1039/c7tc05092e
ZHANG P, KRAGT A J J, SCHENNING A P H J, et al. An easily coatable temperature responsive cholesteric liquid crystal oligomer for making structural colour patterns [J]. Journal of Materials Chemistry C, 2018, 6(27): 7184-7187. doi: 10.1039/c8tc02252fhttp://dx.doi.org/10.1039/c8tc02252f
SOL J A H P, SENTJENS H, YANG L T, et al. Anisotropic iridescence and polarization patterns in a direct Ink written chiral photonic polymer [J]. Advanced Materials, 2021, 33(39): 2103309. doi: 10.1002/adma.202103309http://dx.doi.org/10.1002/adma.202103309
KRAGT A J J, HOEKSTRA D C, STALLINGA S, et al. 3D helix engineering in chiral photonic materials [J]. Advanced Materials, 2019, 31(33): 1903120. doi: 10.1002/adma.201903120http://dx.doi.org/10.1002/adma.201903120
MOIRANGTHEM M, SCHENNING A P H J. Full color camouflage in a printable photonic blue-colored polymer [J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4168-4172. doi: 10.1021/acsami.7b17892http://dx.doi.org/10.1021/acsami.7b17892
YANG Y Z, ZHANG X, CHEN Y H, et al. Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks [J]. ACS Applied Materials & Interfaces, 2021, 13(34): 41102-41111. doi: 10.1021/acsami.1c11711http://dx.doi.org/10.1021/acsami.1c11711
YANG C J, WU B H, RUAN J, et al. 3D-printed biomimetic systems with synergetic color and shape responses based on oblate cholesteric liquid crystal droplets [J]. Advanced Materials, 2021, 33(10): 2006361. doi: 10.1002/adma.202006361http://dx.doi.org/10.1002/adma.202006361
YANG B W, CAI F, HUANG S, et al. Athermal and soft multi-nanopatterning of azopolymers: phototunable mechanical properties [J]. Angewandte Chemie International Edition, 2020, 59(10): 4035-4042. doi: 10.1002/anie.201914201http://dx.doi.org/10.1002/anie.201914201
纪宇帆,蔡锋,于海峰.液晶聚合物的表面形貌光调控研究进展[J].应用化学,2021,38(10):1226-1237. doi: 10.19894/j.issn.1000-0518.210381http://dx.doi.org/10.19894/j.issn.1000-0518.210381
JI Y F, CAI F, YU H F. Research progress on photoswitchable surface topography of liquid crystalline polymer [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1226-1237. (in Chinese). doi: 10.19894/j.issn.1000-0518.210381http://dx.doi.org/10.19894/j.issn.1000-0518.210381
LAN R C, WANG Q, SHEN C, et al. Humidity-induced simultaneous visible and fluorescence photonic patterns enabled by integration of covalent bonds and ionic crosslinks [J]. Advanced Functional Materials, 2021, 31(51): 2106419. doi: 10.1002/adfm.202106419http://dx.doi.org/10.1002/adfm.202106419
ZUO B, WANG M, LIN B P, et al. Photomodulated tricolor-changing artificial flowers [J]. Chemistry of Materials, 2018, 30(21): 8079-8088. doi: 10.1021/acs.chemmater.8b04204http://dx.doi.org/10.1021/acs.chemmater.8b04204
LAN R C, GAO Y Z, SHEN C, et al. Humidity-responsive liquid crystalline network actuator showing synergistic fluorescence color change enabled by aggregation induced emission luminogen [J]. Advanced Functional Materials, 2021, 31(17): 2010578. doi: 10.1002/adfm.202010578http://dx.doi.org/10.1002/adfm.202010578
MA J Z, YANG Y Z, VALENZUELA C, et al. Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds [J]. Angewandte Chemie International Edition, 2022, 61(9): e202116219.
GAO J J, TIAN M, HE Y R, et al. Multidimensional-encryption in emissive liquid crystal elastomers through synergistic usage of photorewritable fluorescent patterning and reconfigurable 3D shaping [J]. Advanced Functional Materials, 2022, 32(4): 2107145. doi: 10.1002/adfm.202107145http://dx.doi.org/10.1002/adfm.202107145
CHEN L, BISOYI H K, HUANG Y L, et al. Healable and rearrangeable networks of liquid crystal elastomers enabled by diselenide bonds [J]. Angewandte Chemie International Edition, 2021, 60(30): 16394-16398. doi: 10.1002/anie.202105278http://dx.doi.org/10.1002/anie.202105278
ZUO B, WANG M, LIN B P, et al. Visible and infrared three-wavelength modulated multi-directional actuators [J]. Nature Communications, 2019, 10(1): 4539. doi: 10.1038/s41467-019-12583-xhttp://dx.doi.org/10.1038/s41467-019-12583-x
WARE T H, MCCONNEY M E, WIE J J, et al. Voxelated liquid crystal elastomers [J]. Science, 2015, 347(6225): 982-984. doi: 10.1126/science.1261019http://dx.doi.org/10.1126/science.1261019
DE HAAN L T, SÁNCHEZ-SOMOLINOS C, BASTIAANSEN C M M, et al. Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks [J]. Angewandte Chemie International Edition, 2012, 51(50): 12469-12472. doi: 10.1002/anie.201205964http://dx.doi.org/10.1002/anie.201205964
DE HAAN L T, GIMENEZ-PINTO V, KONYA A, et al. Accordion-like actuators of multiple 3D patterned liquid crystal polymer films [J]. Advanced Functional Materials, 2014, 24(9): 1251-1258. doi: 10.1002/adfm.201302568http://dx.doi.org/10.1002/adfm.201302568
YAMADA M, KONDO M, MAMIYA J I, et al. Photomobile polymer materials: towards light-driven plastic motors [J]. Angewandte Chemie International Edition, 2008, 47(27): 4986-4988. doi: 10.1002/anie.200800760http://dx.doi.org/10.1002/anie.200800760
YU Y L, NAKANO M, IKEDA T. Directed bending of a polymer film by light [J]. Nature, 2003, 425(6954): 145. doi: 10.1038/425145ahttp://dx.doi.org/10.1038/425145a
VAN OOSTEN C L, BASTIAANSEN C W M, BROER D J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light [J]. Nature Materials, 2009, 8(8): 677-682. doi: 10.1038/nmat2487http://dx.doi.org/10.1038/nmat2487
CHENG Z X, MA S D, ZHANG Y H, et al. Photomechanical motion of liquid-crystalline fibers bending away from a light source [J]. Macromolecules, 2017, 50(21): 8317-8324. doi: 10.1021/acs.macromol.7b01741http://dx.doi.org/10.1021/acs.macromol.7b01741
IAMSAARD S, ASSHOFF S J, MATT B, et al. Conversion of light into macroscopic helical motion [J]. Nature Chemistry, 2014, 6(3): 229-235. doi: 10.1038/nchem.1859http://dx.doi.org/10.1038/nchem.1859
IAMSAARD S, ANGER E, ASSHOFF S J, et al. Fluorinated azobenzenes for shape-persistent liquid crystal polymer networks [J]. Angewandte Chemie International Edition, 2016, 55(34): 9908-9912. doi: 10.1002/anie.201603579http://dx.doi.org/10.1002/anie.201603579
LEE K M, WHITE T J. Photomechanical response of composite structures built from azobenzene liquid crystal polymer networks [J]. Polymers, 2011, 3(3): 1447-1457. doi: 10.3390/polym3031447http://dx.doi.org/10.3390/polym3031447
KUMAR K, KNIE C, BLÉGER D, et al. A chaotic self-oscillating sunlight-driven polymer actuator [J]. Nature Communications, 2016, 7: 11975. doi: 10.1038/ncomms11975http://dx.doi.org/10.1038/ncomms11975
DONG L L, ZHAO Y. Photothermally driven liquid crystal polymer actuators [J]. Materials Chemistry Frontiers, 2018, 2(11): 1932-1943. doi: 10.1039/c8qm00363ghttp://dx.doi.org/10.1039/c8qm00363g
FINKELMANN H, NISHIKAWA E, PEREIRA G G, et al. A new opto-mechanical effect in solids [J]. Physical Review Letters, 2001, 87(1): 015501. doi: 10.1103/physrevlett.87.015501http://dx.doi.org/10.1103/physrevlett.87.015501
GELEBART A H, MULDER D J, VANTOMME G, et al. A rewritable, reprogrammable, dual light-responsive polymer actuator [J]. Angewandte Chemie International Edition, 2017, 56(43): 13436-13439. doi: 10.1002/anie.201706793http://dx.doi.org/10.1002/anie.201706793
LV P F, YANG X, BISOYI H K, et al. Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics [J]. Materials Horizons, 2021, 8(9): 2475-2484. doi: 10.1039/d1mh00623ahttp://dx.doi.org/10.1039/d1mh00623a
LAHIKAINEN M, KUNTZE K, ZENG H, et al. Tunable photomechanics in diarylethene-driven liquid crystal network actuators [J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47939-47947. doi: 10.1021/acsami.0c12735http://dx.doi.org/10.1021/acsami.0c12735
WANG M, LIN B P, YANG H. A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes [J]. Nature Communications, 2016, 7: 13981. doi: 10.1038/ncomms13981http://dx.doi.org/10.1038/ncomms13981
LU X L, ZHANG H, FEI G X, et al. Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation [J]. Advanced Materials, 2018, 30(14): 1706597. doi: 10.1002/adma.201706597http://dx.doi.org/10.1002/adma.201706597
尚咪,杨玲,刘丹飞,等.智能防伪材料研究进展[J].功能材料,2019,50(4):4056-4061,4066. doi: 10.3969/j.issn.1001-9731.2019.04.009http://dx.doi.org/10.3969/j.issn.1001-9731.2019.04.009
SHANG M, YANG L, LIU D F, et al. A review of anti-counterfeiting technology based on intelligent materials [J]. Journal of Functional Materials, 2019, 50(4): 4056-4061, 4066. (in Chinese). doi: 10.3969/j.issn.1001-9731.2019.04.009http://dx.doi.org/10.3969/j.issn.1001-9731.2019.04.009
DU L, DAI J, XU Z Y, et al. From shape and color memory PCL network to access high security anti-counterfeit material [J]. Polymer, 2019, 172: 52-57. doi: 10.1016/j.polymer.2019.03.054http://dx.doi.org/10.1016/j.polymer.2019.03.054
CHEN L, ZHANG Y R, YE H T, et al. Color-changeable four-dimensional printing enabled with ultraviolet-curable and thermochromic shape memory polymers [J]. ACS Applied Materials & Interfaces, 2021, 13(15): 18120-18127. doi: 10.1021/acsami.1c02656http://dx.doi.org/10.1021/acsami.1c02656
MITOV M. Cholesteric liquid crystals with a broad light reflection band [J]. Advanced Materials, 2012, 24(47): 6260-6276. doi: 10.1002/adma.201202913http://dx.doi.org/10.1002/adma.201202913
TAMAOKI N, KAMEI T. Reversible photo-regulation of the properties of liquid crystals doped with photochromic compounds [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010, 11(2/3): 47-61. doi: 10.1016/j.jphotochemrev.2010.09.001http://dx.doi.org/10.1016/j.jphotochemrev.2010.09.001
EELKEMA R. Photo-responsive doped cholesteric liquid crystals [J]. Liquid Crystals, 2011, 38(11/12): 1641-1652. doi: 10.1080/02678292.2011.600779http://dx.doi.org/10.1080/02678292.2011.600779
WANG Y, LI Q. Light-driven chiral molecular switches or motors in liquid crystals [J]. Advanced Materials, 2012, 24(15): 1926-1945. doi: 10.1002/adma.201200241http://dx.doi.org/10.1002/adma.201200241
LIU L, WANG M, GUO L X, et al. Aggregation-induced emission luminogen-functionalized liquid crystal elastomer soft actuators [J]. Macromolecules, 2018, 51(12): 4516-4524. doi: 10.1021/acs.macromol.8b00677http://dx.doi.org/10.1021/acs.macromol.8b00677
HU W, SUN C, REN Y X, et al. Programmable chromism and photoluminescence of spiropyran-based liquid crystalline polymer with tunable glass transition temperature [J]. Angewandte Chemie International Edition, 2021, 60(35): 19406-19412. doi: 10.1002/anie.202107048http://dx.doi.org/10.1002/anie.202107048
0
浏览量
207
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构