
浏览全部资源
扫码关注微信
1.昆明理工大学 信息工程与自动化学院, 云南 昆明 650500
2.云南省计算机技术应用重点实验室, 云南 昆明 650500
[ "易三莉(1977-), 女, 湖南岳阳人, 博士, 讲师, 2011年于中南大学获得博士学位, 主要从事医学图像处理方面的研究。E-mail:152514845@qq.com" ]
[ "王天伟(1990-), 男, 贵州毕节人, 硕士研究生, 2018年于鞍山师范学院获得学士学位, 主要从事医学图像处理方面的研究。E-mail: 1071186434@qq.com" ]
收稿日期:2021-01-27,
修回日期:2021-03-28,
纸质出版日期:2021-11
移动端阅览
易三莉, 王天伟, 杨雪莲, 等. ARS-CNN算法在新冠肺炎识别中的研究[J]. 液晶与显示, 2021,36(11):1565-1572.
San-li YI, Tian-wei WANG, Xue-lian YANG, et al. Research on ARS-CNN algorithm in the identification of COVID-19[J]. Chinese journal of liquid crystals and displays, 2021, 36(11): 1565-1572.
易三莉, 王天伟, 杨雪莲, 等. ARS-CNN算法在新冠肺炎识别中的研究[J]. 液晶与显示, 2021,36(11):1565-1572. DOI: 10.37188/CJLCD.2021-0027.
San-li YI, Tian-wei WANG, Xue-lian YANG, et al. Research on ARS-CNN algorithm in the identification of COVID-19[J]. Chinese journal of liquid crystals and displays, 2021, 36(11): 1565-1572. DOI: 10.37188/CJLCD.2021-0027.
随着新冠肺炎的蔓延,为了准确诊断新冠肺炎,本文提出了一种改进的基于卷积神经网络的新冠肺炎识别算法即ARS-CNN算法。该算法在CNN网络结构的基础上,加入了新的功能模块:首先,为了捕获不同感受野的多尺度特征信息并加强网络对图像特征的利用,提出了跳跃连接RFB结构;其次,通过短连接aspp模块来改善网络在特征提取过程中图像分辨率减少所导致的局部信息丢失的问题;最后,将注意力机制GC模块与sSE模块进行融合实现对特征信息的筛选并完成特征信息之间的交互,从而提高新冠肺炎识别精度。在公开的COVID-19胸部X光数据集(Chest X-ray Database)上的实验表明,本文所提出的算法的加权平均准确率、精准率、召回率、FI分数、特异性分别为98.22%、97.91%、97.95%、97.92%、98.33%。与其他分类算法相比,本文所提出算法能够对肺部疾病进行高效识别,具有更高的识别性能。
With the spread of new coronary pneumonia
in order to accurately diagnose COVID-19
this article proposes an improved new coronary pneumonia recognition algorithm based on convolutional neural network
namely the ARS-CNN algorithm. Based on the CNN network structure
this algorithm adds new functional modules. Firstly
in order to capture the multi-scale feature information of different receptive fields and strengthen the network's use of image features
a jump connection RFB structure is proposed. Secondly
the problem of local information loss caused by the reduction of image resolution during the feature extraction process of the network is improved by short-connecting the aspp module. Finally
the attention mechanism GC module and the sSE module are merged to achieve the screening of feature information and the interaction between feature information
thereby improving the accuracy of new coronary pneumonia recognition. Experiments on the public COVID-19 Chest X-ray Database data set show that the weighted average accuracy
precision
recall
FI score
and specificity of the algorithm proposed in this article are 98.22%
97.91%
97.95%
97.92%
98.33%
respectively. Compared with other classification algorithms
the algorithm proposed in this paper can efficiently recognize lung diseases and has higher recognition performance.
李 娜 , 姜 志 , 王 军 , 等 . 基于Faster R-CNN的仪表识别方法 . 液晶与显示 , 2020 . 35 ( 12 ): 1291 - 1298 . DOI: 10.37188/YJYXS20203512.1291 http://doi.org/10.37188/YJYXS20203512.1291 .
N LI , Z JIANG , J WANG , 等 . Instrument recognition method based on Faster R-CNN . Chinese Journal of Liquid Crystals and Displays , 2020 . 35 ( 12 ): 1291 - 1298 . DOI: 10.37188/YJYXS20203512.1291 http://doi.org/10.37188/YJYXS20203512.1291 .
陈 斌 , 朱 晋宁 , 东 一舟 . 基于残差整流增强卷积神经网络的表情识别 . 液晶与显示 , 2020 . 35 ( 12 ): 1299 - 1308 . DOI: 10.37188/YJYXS20203512.1299 http://doi.org/10.37188/YJYXS20203512.1299 .
B CHEN , J N ZHU , Y Z DONG . Expression recognition based on residual rectifier enhanced convolution neural network . Chinese Journal of Liquid Crystals and Displays , 2020 . 35 ( 12 ): 1299 - 1308 . DOI: 10.37188/YJYXS20203512.1299 http://doi.org/10.37188/YJYXS20203512.1299 .
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25 th International Conference on Neural Information Processing Systems . Lake Tahoe: ACM, 2012: 1097-1105.
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv : 1409.1556, 2014.
HE K M, ZHANG X Y, REN S Q, et al . Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ). Las Vegas: IEEE, 2016: 770-778.
SZEGEDY C, LIU W, JIA Y Q, et al . Going deeper with convolutions[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ). Boston: IEEE, 2015: 1-9.
LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]// Proceedings of the 15 th European Conference on Computer Vision . Munich: Springer, 2018.
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ). Honolulu: IEEE, 2017: 1800-1807.
HUANG G, LIU Z, VAN DER MAATEN L, et al . Densely connected convolutional networks[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ). Honolulu: IEEE, 2017: 2261-2269.
EZZAT D, HASSANIEN A E, ELLA H A. GSA-DenseNet121-COVID-19: a hybrid deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization algorithm[J]. arXiv : 2004.05084, 2020.
R A AL-FALLUJI , Z D KATHEETH , B ALATHARI . Automatic detection of COVID-19 using chest X-Ray images and modified ResNet18-based convolution neural networks . Computers, Materials & Continua , 2021 . 66 ( 2 ): 1301 - 1313 . http://www.researchgate.net/publication/346677007_Automatic_Detection_of_COVID-19_Using_Chest_X-Ray_Images_and_Modified_ResNet18-Based_Convolution_Neural_Networks http://www.researchgate.net/publication/346677007_Automatic_Detection_of_COVID-19_Using_Chest_X-Ray_Images_and_Modified_ResNet18-Based_Convolution_Neural_Networks .
C OUCHICHA , O AMMOR , M MEKNASSI . CVDNet: a novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images . Chaos, Solitons & Fractals , 2020 . 140 110245- .
K BAYOUDH , F HAMDAOUI , A MTIBAA . Hybrid-COVID: a novel hybrid 2D/3D CNN based on cross-domain adaptation approach for COVID-19 screening from chest X-ray images . Physical and Engineering Sciences in Medicine , 2020 . 43 ( 4 ): 1415 - 1431 . DOI: 10.1007/s13246-020-00957-1 http://doi.org/10.1007/s13246-020-00957-1 .
CHEN L C, ZHU Y K, PAPANDREOU G, et al . Encoder-decoder with atrous separable convolution for semantic image segmentation[C] // Proceedings of the 15 th European Conference on Computer Vision . Munich: Springer, 2018: 833-851.
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]// Proceedings of the 4 th International Conference on Learning Representations . San Juan, 2016: 1511. 07122.
CAO Y, XU J R, LIN S, et al . GCNet: non-local networks meet squeeze-excitation networks and beyond[C]// Proceedings of 2019 IEEE / CVF International Conference on Computer Vision Workshop ( ICCVW ). Seoul: IEEE, 2019: 1971-1980.
ROY A G, NAVAB N, WACHINGER C. Concurrent spatial and channel 'Squeeze & Excitation' in fully convolutional networks[C]// Proceedings of the 21 st International Conference on Medical Image Computing and Computer Assisted Intervention . Granada: Springer, 2018: 421-429.
SZEGEDY C, IOFFE S, VANHOUCKE V, et al . Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the 31 st AAAI Conference on Artificial Intelligence . San Francisco: ACM, 2017: 4278-4284.
N K CHOWDHURY , M M RAHMAN , M A KABIR . PDCOVIDNet: a parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images . Health Information Science and Systems , 2020 . 8 ( 1 ): 27 DOI: 10.1007/s13755-020-00119-3 http://doi.org/10.1007/s13755-020-00119-3 .
冯 毅博 , 仇 大伟 , 曹 慧 , 等 . 基于深度可分离稠密网络的新型冠状病毒肺炎X线图像检测方法研究 . 生物医学工程学杂志 , 2020 . 37 ( 4 ): 557 - 565 . https://www.cnki.com.cn/Article/CJFDTOTAL-SWGC202004001.htm https://www.cnki.com.cn/Article/CJFDTOTAL-SWGC202004001.htm .
Y B FENG , D W QIU , H CAO , 等 . Research on coronavirus disease 2019(COVID-19) detection method based on depthwise separable DenseNet in chest X-ray images . Journal of Biomedical Engineering , 2020 . 37 ( 4 ): 557 - 565 . https://www.cnki.com.cn/Article/CJFDTOTAL-SWGC202004001.htm https://www.cnki.com.cn/Article/CJFDTOTAL-SWGC202004001.htm .
0
浏览量
140
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621