
浏览全部资源
扫码关注微信
1.长春大学 计算机科学技术学院, 吉林 长春 130022
2.苏州深浅优视智能科技有限公司, 江苏 苏州 215000
3.吉林大学 计算机科学与技术学院, 吉林 长春 130012
4.长春大学 旅游学院 工学院, 吉林 长春 130122
[ "杜钦生(1978-), 男, 吉林磐石人, 博士, 副教授, 2015年于吉林大学获得博士学位, 主要从事嵌入式系统、机器视觉等方面的研究。E-mail:duqsh@sina.com" ]
[ "李丹丹(1993-), 女, 吉林长春人, 硕士研究生, 2016年于长春工业大学获得学士学位, 主要从事图像处理与机器视觉方面的研究。E-mail: 1677716048@qq.com" ]
[ "李雄飞(1963-), 男, 吉林省吉林市人, 博士, 教授, 2002年于吉林大学获得博士学位, 主要从事信息融合与数据挖掘方面的研究。E-mall: lxf@jlu.edu.cn" ]
收稿日期:2020-11-25,
修回日期:2021-02-01,
纸质出版日期:2021-09
移动端阅览
杜钦生, 李丹丹, 陈浩, 等. 结构光3D点云的PIN针针尖提取[J]. 液晶与显示, 2021,36(9):1331-1340.
Qin-sheng DU, Dan-dan LI, Hao CHEN, et al. PIN tip extraction from 3 D point cloud of structured light[J]. Chinese journal of liquid crystals and displays, 2021, 36(9): 1331-1340.
杜钦生, 李丹丹, 陈浩, 等. 结构光3D点云的PIN针针尖提取[J]. 液晶与显示, 2021,36(9):1331-1340. DOI: 10.37188/CJLCD.2020-0321.
Qin-sheng DU, Dan-dan LI, Hao CHEN, et al. PIN tip extraction from 3 D point cloud of structured light[J]. Chinese journal of liquid crystals and displays, 2021, 36(9): 1331-1340. DOI: 10.37188/CJLCD.2020-0321.
在工业生产中对PIN针检测有越来越高的精度要求,针对点云数据存在毛刺现象、孔洞、离群点及大量不同类型的噪点等问题,本文提出采用结构光技术对PIN针的针尖平面在三维空间中进行提取的方法。首先,利用几何特性和直通滤波进行点云粗提取,快速准确地定位目标点云并去除大量非目标点云及离群点;然后,通过KD-tree对目标点云进行索引,使用欧氏距离聚类分割算法对点云数量进行分割,稳定有效地去除目标点云附近的小范围噪点;最后,通过对目标点云法向量与基准面法向量夹角的判断方法有效且精确地去除目标点云内不平整的噪点。实验结果表明,该方法不仅可以准确去除PIN针点云数据的噪点,且能精确地提取针尖坐标,不同方向的PIN针高度测量标准偏差在0.005 mm以内。本文提出的方法普遍适用于平头型PIN针针尖的提取,精度高,速度快,鲁棒性能好。
In industrial production
there is a higher precision requirement for pin detection. In view of the burr phenomenon
holes
outliers and a large number of different types of noise in point cloud data
this paper proposes a method to extract the pin tip plane in three-dimensional space using structured light technology. First of all
rough extraction of point cloud is carried out by geometric characteristics and through filtering. It can locate the target point cloud quickly and remove a large number of non-target point clouds and outliers accurately. Then
the target point cloud is indexed by KD-tree
the Euclidean distance clustering segmentation algorithm is used to segment the number of point clouds. It can stably and effectively remove small-scale noise near the target point cloud. Finally
the angle is judged between the vector of the target point cloud and the normal vector of the reference plane. It can remove the uneven noise in the target point cloud effectively and accurately. The experimental results show that this method can not only remove the noise of the pin point cloud data accurately
but also extract the pin point coordinates accurately. The standard deviation of the pin height measurement in different directions is within 0.005 mm. The method proposed in this paper is generally applicable to the extraction of flat pin tip with high precision
high speed and good robustness.
胡 万志 . 基于图像处理电子连接器视觉定位检测算法 . 控制工程 , 2017 . 24 ( 1 ): 118 - 123 . 10.14107/j.cnki.kzgc.150969 10.14107/j.cnki.kzgc.150969 .
W Z HU . Electronic connector vision inspection algorithm based on image processing . Control Engineering of China , 2017 . 24 ( 1 ): 118 - 123 . 10.14107/j.cnki.kzgc.150969 10.14107/j.cnki.kzgc.150969 .
凡 良玉 , 潘 丰 . 基于视觉的接插件pin针正位度检测系统设计 . 江南大学学报(自然科学版) , 2015 . 14 ( 6 ): 762 - 768 . DOI: 10.3969/j.issn.1671-7147.2015.06.014 http://doi.org/10.3969/j.issn.1671-7147.2015.06.014 .
L Y FAN , F PAN . Detection system design for the pin's position of connectors using machine vision . Journal of Jiangnan University (Natural Science Edition) , 2015 . 14 ( 6 ): 762 - 768 . DOI: 10.3969/j.issn.1671-7147.2015.06.014 http://doi.org/10.3969/j.issn.1671-7147.2015.06.014 .
卢佳宇. 基于机器视觉的航空电连接器插针检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
LU J Y. Research on technologies of pin's detection for avionics electronic connector based on machine vision[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
王彦朝. 基于机器视觉的端子高低针检测系统研究[D]. 哈尔滨: 黑龙江大学, 2018.
WANG Y C. Research on the terminal high and low pin's detection system based on machine vision[D]. Harbin: Heilongjiang University, 2018. (in Chinese)
王 鑫龙 , 孙 文磊 , 张 建杰 , 等 . 基于点云数据的逆向工程技术研究综述 . 制造技术与机床 , 2018 . ( 2 ): 49 - 53 . 10.19287/j.cnki.1005-2402.2018.02.010 10.19287/j.cnki.1005-2402.2018.02.010 .
X L WANG , W L SUN , JJ ZHANG , 等 . Review on reverse engineering research based on point cloud data . Manufacturing Technology & Machine Tool , 2018 . ( 2 ): 49 - 53 . 10.19287/j.cnki.1005-2402.2018.02.010 10.19287/j.cnki.1005-2402.2018.02.010 .
刘芳. 基于3D点云的可操作对象识别方法研究[D]. 北京: 华北电力大学, 2015.
LIU F. Manipulable object recognition research based on 3D point cloud[D]. Beijing: North China Electric Power University, 2015. (in Chinese)
刘阳阳. 三维点云数据预处和分割算法的研究[D]. 西安: 西安工程大学, 2019.
LIU YY. Research on 3D point cloud data processing and segmentation algorithm[D]. Xi'an: Xi'an Polytechnic University, 2019. (in Chinese)
袁 华 , 庞 建铿 , 莫 建文 . 基于噪声分类的双边滤波点云去噪算法 . 计算机应用 , 2015 . 35 ( 8 ): 2305 - 2310 . DOI: 10.3969/j.issn.1001-3695.2015.08.016 http://doi.org/10.3969/j.issn.1001-3695.2015.08.016 .
H YUAN , J K PANG , J W MO . Denoising algorithm for bilateral filtered point cloud based on noise classification . Journal of Computer Applications , 2015 . 35 ( 8 ): 2305 - 2310 . DOI: 10.3969/j.issn.1001-3695.2015.08.016 http://doi.org/10.3969/j.issn.1001-3695.2015.08.016 .
王 晓辉 , 吴 禄慎 , 陈 华伟 . 基于法向量距离分类的散乱点云数据去噪 . 吉林大学学报(工学版) , 2020 . 50 ( 1 ): 278 - 288 . DOI: 10.13229/j.cnki.jdxbgxb20180948 http://doi.org/10.13229/j.cnki.jdxbgxb20180948 .
X H WANG , LS WU , H W CHEN . Denoising of scattered point cloud data based on normal vector distance classification . Journal of Jilin University (Engineering and Technology Edition) , 2020 . 50 ( 1 ): 278 - 288 . DOI: 10.13229/j.cnki.jdxbgxb20180948 http://doi.org/10.13229/j.cnki.jdxbgxb20180948 .
吴 禄慎 , 史 皓良 , 陈 华伟 . 基于特征信息分类的三维点数据去噪 . 光学精密工程 , 2016 . 24 ( 6 ): 1465 - 1473 . 10.3788/OPE.20162406.1465 10.3788/OPE.20162406.1465 .
L S WU , H L SHI , H W CHEN . Denoising of three-dimensional point data based on classification of feature information . Optics and Precision Engineering , 2016 . 24 ( 6 ): 1465 - 1473 . 10.3788/OPE.20162406.1465 10.3788/OPE.20162406.1465 .
刘静静. 三维点云重建中的去噪算法研究[D]. 北京: 北京交通大学, 2019.
LIU JJ. Denoising algorithms in 3D point cloud reconstruction[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
达 飞鹏 , 盖 绍彦 . 光栅投影三维精密测量 , : 北京 科学出版社 , 2011 .
F P DA , S Y GAI . 3D Precision Measurement of Grating Projection , : Beijing Science Press , 2011 .
刘 新宇 . 面结构光在三维测量中的应用技术研究 . 航空制造技术 , 2019 . 62 ( 10 ): 83 - 87 . 10.16080/j.issn1671-833x.2019.10.083 10.16080/j.issn1671-833x.2019.10.083 .
X Y LIU . Research on application of surface structured light in 3D measurement . Aeronautical Manufacturing Technology , 2019 . 62 ( 10 ): 83 - 87 . 10.16080/j.issn1671-833x.2019.10.083 10.16080/j.issn1671-833x.2019.10.083 .
高 瞻宇 , 顾 营迎 , 吕 耀宇 , 等 . 融合通用形变模型信息的面部三维重建 . 光学精密工程 , 2018 . 26 ( 1 ): 184 - 192 . DOI: 10.3788/OPE.20182601.0184 http://doi.org/10.3788/OPE.20182601.0184 .
Z Y GAO , Y Y GU , Y Y LV , 等 . Face reconstruction fused with generic morphable model . Optics and Precision Engineering , 2018 . 26 ( 1 ): 184 - 192 . DOI: 10.3788/OPE.20182601.0184 http://doi.org/10.3788/OPE.20182601.0184 .
杨曼. 基于Kinect三维点云重建中预处理与配准的研究[D]. 西安: 西安工程大学, 2018.
YANG M. Research on preprocessing and registration of 3D point cloud reconstruction based on Kinect[D]. Xi'an: Xi'an Polytechnic University, 2018. (in Chinese)
王 雅男 , 王 挺峰 , 田 玉珍 , 等 . 基于改进的局部表面凸性算法三维点云分割 . 中国光学 , 2017 . 10 ( 3 ): 348 - 354 . 10.3788/CO.20171003.0348 10.3788/CO.20171003.0348 .
Y N WANG , T F WANG , Y Z TIAN , 等 . Improved local convexity algorithm of segmentation for 3D point cloud . Chinese Optics , 2017 . 10 ( 3 ): 348 - 354 . 10.3788/CO.20171003.0348 10.3788/CO.20171003.0348 .
崔绍臣. 三维点云数据处理系统设计与开发[D]. 长春: 吉林大学, 2019.
CUI S C. Design and development of 3D point cloud data processing system[D]. Changchun: Jilin University, 2019. (in Chinese)
陈 向阳 , 杨 洋 , 向 云飞 . 欧氏聚类算法支持下的点云数据分割 . 测绘通报 , 2017 . ( 11 ): 27 - 31, 36 . 10.13474/j.cnki.11-2246.2017.0342 10.13474/j.cnki.11-2246.2017.0342 .
X Y CHEN , Y YANG , Y F XIANG . Measurement of point cloud data segmentation based on Euclidean clustering algorithm . Bulletin of Surveying and Mapping , 2017 . ( 11 ): 27 - 31, 36 . 10.13474/j.cnki.11-2246.2017.0342 10.13474/j.cnki.11-2246.2017.0342 .
宗 长富 , 文 龙 , 何 磊 . 基于欧几里得聚类算法的三维激光雷达障碍物检测技术 . 吉林大学学报(工学版) , 2020 . 50 ( 1 ): 107 - 113 . 10.13229/j.cnki.jdxbgxb20181242 10.13229/j.cnki.jdxbgxb20181242 .
C F ZONG , L WEN , L HE . Object detection based on Euclidean clustering algorithm with 3D laser scanner . Journal of Jilin University (Engineering and Technology Edition) , 2020 . 50 ( 1 ): 107 - 113 . 10.13229/j.cnki.jdxbgxb20181242 10.13229/j.cnki.jdxbgxb20181242 .
薛 连杰 , 齐 臣坤 , 张 彪 , 等 . 基于3维点云欧氏聚类和RANSAC边界拟合的目标物体尺寸和方位识别 . 机械设计与研究 , 2018 . 34 ( 5 ): 44 - 48, 53 . DOI: 10.13952/j.cnki.jofmdr.2018.0187 http://doi.org/10.13952/j.cnki.jofmdr.2018.0187 .
L J XUE , C K QI , B ZHANG , 等 . Object size and orientation recognition based on 3D point cloud Euclideam clustering and RANSAC boundary fitting . Machine Design and Research , 2018 . 34 ( 5 ): 44 - 48, 53 . DOI: 10.13952/j.cnki.jofmdr.2018.0187 http://doi.org/10.13952/j.cnki.jofmdr.2018.0187 .
黄 建宇 , 屈 玉福 , 姜 吉祥 . 无人飞行器自主降落区识别方法研究 . 液晶与显示 , 2018 . 33 ( 3 ): 238 - 244 . DOI: 10.3788/YJYXS20183303.0238 http://doi.org/10.3788/YJYXS20183303.0238 .
J Y HUANG , Y F QU , J X JIANG . Method for identifying the landing area of unmanned aerial vehicle . Chinese Journal of Liquid Crystals and Displays , 2018 . 33 ( 3 ): 238 - 244 . DOI: 10.3788/YJYXS20183303.0238 http://doi.org/10.3788/YJYXS20183303.0238 .
李 宝 , 程 志全 , 党 岗 , 等 . 三维点云法向量估计综述 . 计算机工程与应用 , 2010 . 46 ( 23 ): 1 - 7 . DOI: 10.3778/j.issn.1002-8331.2010.23.001 http://doi.org/10.3778/j.issn.1002-8331.2010.23.001 .
B LI , Z Q CHENG , G DANG , 等 . Survey on normal estimation for 3D point clouds . Computer Engineering and Applications , 2010 . 46 ( 23 ): 1 - 7 . DOI: 10.3778/j.issn.1002-8331.2010.23.001 http://doi.org/10.3778/j.issn.1002-8331.2010.23.001 .
袁 小翠 , 吴 禄慎 , 陈 华伟 . 尖锐特征曲面散乱点云法向估计 . 光学精密工程 , 2016 . 24 ( 10 ): 2581 - 2588 . 10.3788/OPE.20162410.2581 10.3788/OPE.20162410.2581 .
X C YUAN , L S WU , H W CHEN . Normal estimation of scattered point cloud with sharp feature . Optics and Precision Engineering , 2016 . 24 ( 10 ): 2581 - 2588 . 10.3788/OPE.20162410.2581 10.3788/OPE.20162410.2581 .
M GROSS , H PFISTER . Point-Based Graphics: A volume in The Morgan Kaufmann Series in Computer Graphics , : San Francisco Morgan Kaufmann Publishers Inc. , 2007 .
0
浏览量
282
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621