
浏览全部资源
扫码关注微信
香港浸会大学 物理系, 有机电子科学卓越研究中心, 先进材料研究所, 香港 999077
[ "刘映雪(1992年-), 女, 香港人, 博士研究生, 2017年于香港浸会大学获得学士学位。主要从事溶液加工有机半导体和钙钛矿薄膜器件的短波红外光可视化技术的研究。E-mail:17481678@life.hkbu.edu.hk" ]
[ "朱福荣(1960年-), 男, 上海人, 教授, 1993年于澳大利亚查尔斯达尔文(Charles Darwin)大学获得博士学位, 主要从事有机光电器件物理, 新型材料的发光器件机理; 钙钛矿光电器件, 包括光伏器件和电致发光二极管; 高效稳定的有机太阳能电池; 有机薄膜光探测器和应用的研究。E-mail:frzhu@hkbu.edu.hk" ]
收稿日期:2020-09-14,
录用日期:2020-9-27,
纸质出版日期:2021-01
移动端阅览
刘映雪, 朱福荣. 近红外光的可视化及其应用[J]. 液晶与显示, 2021,36(1):78-104.
Ying-suet LAU, Fu-rong ZHU. Visualization of near-infrared light and applications[J]. Chinese journal of liquid crystals and displays, 2021, 36(1): 78-104.
刘映雪, 朱福荣. 近红外光的可视化及其应用[J]. 液晶与显示, 2021,36(1):78-104. DOI: 10.37188/CJLCD.2020-0287.
Ying-suet LAU, Fu-rong ZHU. Visualization of near-infrared light and applications[J]. Chinese journal of liquid crystals and displays, 2021, 36(1): 78-104. DOI: 10.37188/CJLCD.2020-0287.
开发高性能的近红外可视化器件在生物成像、食物检测、健康监测和环境分析等领域有着重要意义。近红外可视化器件由光探测单元和发光单元组成,可将人眼不可视的近红外光转换为可见光。其工作机制是,光探测单元作为发光单元的载流子注入层,在近红外光下产生光电流,因而被近红外光照射的区域会产生电荷注入,在发光单元的对应区域复合发光,发射可见光。没有近红外光照射时,光探测单元中不产生光电流,将抑制发光单元中的电荷注入,因而不发光。因此,近红外可视化器件可用于对辐射、反射或吸收近红外光的物质成像。本综述介绍了近红外可视化器件的工作原理和最新进展,包括基于无机、有机半导体等不同材料的近红外可视化器件。研究发现,近红外可视化器件的光子转换效率由近红外光探测单元和发光单元的光电转换效率决定。本文归纳了提高近红外可视化器件的光子-光子转换效率的方法和相关工作,探讨和展望了近红外光的可视化技术在三维图像分析、近红外检测卡、生物成像、健康和环境监测与检测的应用前景。
Development of high performance near-infrared (NIR) visualization devices offers an exciting opportunity for a plethora of applications in bio imaging
food
wellness
surveillance
and environmental monitoring. NIR visualization devices include an NIR photodetector (PD) unit monolithically integrated with a visible light-emitting diode (LED) unit
enabling the direct visualization of the incident invisible NIR light. In a NIR visualization device
the NIR PD unit serves as one of the charge-injection layers in the LED unit. The hole-electron current balance in the NIR visualization device is controlled by the photocurrent generated in the NIR PD in the presence of the NIR light. The visible light emission in the LED unit is observed in area where the effective charge injection occurs
adjusted by the NIR PD unit in the presence of the NIR light
such that the objects reflecting or illuminating NIR light can be visualized. Likewise
the charge injection in the LED unit can be suppressed in the absent of NIR light or it is reduced due to the decrease in photocurrent in the NIR PD unit
e.g.
the presence of the NIR absorbing materials that partially block the NIR light. This review provides a comprehensive overview discussing the operation principle of the NIR visualization devices and the recent progresses made in different types of NIR visualization devices prepared using different inorganic
organic functional semiconductor materials and their combinations. The photon-to-photon conversion efficiency is highly dependent on the quantum efficiency of the NIR PD unit and the LED unit in the NIR visualization device. The efforts and progresses in the development of a series of NIR visualization devices and the applications in 3D image analysis
NIR detection card
bio images
health and environmental monitoring and detection are presented.
KÄLLHAMMER J E. The road ahead for car night-vision[J]. Nature Photonics , 2006, sample: 12-13.
WELSHER K, LIU Z, SHERLOCK S P, et al . A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice[J]. Nature Nanotechnology , 2009, 4(11):773-780.
GAO X H, CUI Y Y, LEVENSON R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nature Biotechnology , 2004, 22(8):969-976.
YANG D Z, ZHOU X K, MA D G, et al . Near infrared to visible light organic up-conversion devices with photon-to-photon conversion efficiency approaching 30%[J]. Materials Horizons , 2018, 5(5):874-882.
LIU S W, LEE C C, YUAN C H, et al . Transparent organic upconversion devices for near-infrared sensing[J]. Advanced Materials , 2015, 27(7):1217-1222.
YUAN C H, LEE C C, LIU C F, et al . Cathodic-controlled and near-infrared organic upconverter for local blood vessels mapping[J]. Scientific Reports , 2016, 6:32324.
DING H, LU L H, SHI Z, et al . Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources[J] Proceedings of the National Academy of Sciences of the United States of America , 2018, 115(26):6632-6637.
LU J S, ZHENG Y, CHEN Z J, et al . Optical upconversion devices based on photosensitizer-doped organic light-emitting diodes[J]. Applied Physics Letters , 2007, 91(20):201107.
LI N, LAN Z J, LAU Y S, et al . SWIR photodetection and visualization realized by incorporating an organic SWIR sensitive bulk heterojunction[J]. Advanced Science , 2020, 7(14):2000444.
ALLARD L B, LIU H C, BUCHANAN M, et al . Pixelless infrared imaging utilizing a p-type quantum well infrared photodetector integrated with a light emitting diode[J]. Applied Physics Letters , 1997, 70(21):2784-2786.
BOUCHERIF A, BAN D, LUO H, et al . InAsSb based mid-infrared optical upconversion devices operable at thermoelectric temperatures[J]. Electronics Letters , 2008, 44(4):312-313.
CHEN J, TAO J C, BAN D Y, et al . Hybrid organic/inorganic optical up-converter for pixel-less near-infrared imaging[J]. Advanced Materials , 2012, 24(23):3138-3142.
JIANG J T, TSAO S, O'SULLIVAN T, et al . Fabrication of indium bumps for hybrid infrared focal plane array applications[J]. Infrared Physics & Technology , 2004, 45(2):143-151.
KRUSE P W, PRIBBLE F C, SCHULZE R G. Solid-state infrared-wavelength converter employing high-quantum-efficiency Ge-GaAs heterojunction[J]. Journal of Applied Physics , 1967, 38(4):1718-1720.
LIU H C, GAO M, POOLE P J. 1.5μm up-conversion device[J]. Electronics Letters , 2000, 36(15):1300-1301.
LIU H C, ALLARD L B, BUCHANAN M, et al . Pixelless infrared imaging device[J]. Electronics Letters , 1997, 33(5):379-380.
LIU H C, LI J M, WASILEWSKI Z R, et al . Integrated quantum well intersubband photodetector and light-emitting diode for thermal imaging[C]// Proceedings of SPIE 2552 , Infrared Technology Ⅹ Ⅺ. San Diego, CA: APIE, 1995: 2552.
LUO H, BAN D, LIU H C, et al . Optical upconverter with integrated heterojunction phototransistor and light-emitting diode[J]. Applied Physics Letters , 2006, 88(7):073501.
CHU X B, GUAN M, LI L S, et al . Improved efficiency of organic/inorganic hybrid near-infrared light upconverter by device optimization[J]. ACS Applied Materials & Interfaces , 2012, 4(9):4976-4980.
CHEN J, BAN D Y, HELANDER M G, et al . Near infrared optical upconverter based on i-In 0.53 Ga 0.47 As/C 60 photovoltaic junction[J]. Electranics Letters, 2009, 45(14):753-755.
CHEN J, BAN D Y, HELANDER M G, et al . Near-infrared inorganic/organic optical upconverter with an external power efficiency of > 100%[J]. Advanced Materials , 2010, 22(43):4900-4904.
NI J P, TANO T, ICHINO Y, et al . Organic light-emitting diode with TiOPc layer-a new multifunctional optoelectronic device[J]. Japanese Journal of Applied Physics , 2001, 40(9A):L948-L951.
KIM D Y, SONG D W, CHOPRA N, et al . Organic infrared upconversion device[J]. Advanced Materials , 2010, 22(20):2260-2263.
SONG Q G, LIN T, SU Z S, et al . Organic upconversion display with an over 100% photon-to-photon upconversion efficiency and a simple pixelless device structure[J]. The Journal of Physical Chemistry Letters , 2018, 9(23):6818-6824.
KIM D Y, CHOUDHURY K R, LEE J W, et al . PbSe nanocrystal-based infrared-to-visible up-conversion device[J]. Nano Letters , 2011, 11(5):2109-2113.
YU H, KIM D, LEE J, et al . High-gain infrared-to-visible upconversion light-emitting phototransistors[J]. Nature Photonics , 2016, 10(2):129-134.
ZHOU W J, SHANG Y Q, GARCÍA DE ARQUER F P, et al . Solution-processed upconversion photodetectors based on quantum dots[J] . Nature Electronics , 2020, 3(5):251-258.
YEDDU V, SEO G, CRUCIANI F, et al . Low-band-gap polymer-based infrared-to-visible upconversion organic light-emitting diodes with infrared sensitivity up to 1.1μm[J]. ACS Photonics , 2019, 6(10):2368-2374.
YU H, CHENG Y H, LI M L, et al . Sub-band gap turn-on near-infrared-to-visible up-conversion device enabled by an organic-inorganic hybrid perovskite photovoltaic absorber[J]. ACS Applied Materials & Interfaces , 2018, 10(18):15920-15925.
TACHIBANA H, AIZAWA N, HIDAKA Y, et al . Tunable full-color electroluminescence from all-organic optical upconversion devices by near-infrared sensing[J]. ACS Photonics , 2017, 4(2):223-227.
KIM D Y, LAI T H, LEE J W, et al . Multi-spectral imaging with infrared sensitive organic light emitting diode[J]. Scientific Reports , 2014, 4:5946.
DUPONT E, LIU H C, BUCHANAN M, et al . Pixel-less infrared imaging based on the integration of an n-type quantum-well infrared photodetector with a light-emitting diode[J]. Applied Physics Letters , 1999, 75(4):563-565.
SANDHU J S, HEBERLE A P, ALPHENAAR B W, et al . Near-infrared to visible up-conversion in a forward-biased Schottky diode with a p-doped channel[J]. Applied Physics Letters , 1999, 76(12):1507-1509.
LUO H, BAN D, LIU H C, et al . Pixelless imaging device using optical up-converter[J]. IEEE Electron Device Letters , 2004, 25(3):129-131.
LUO H, BAN D, LIU H C, et al . 1.5μm to 0.87μm optical upconversion using wafer fusion technology[J]. Journal of Vacuum Science & Technology A, 2004, 22(3): 788-791.
BAN D, LUO H, LIU H C, et al . Pixelless 1.5-μm up-conversion imaging device fabricated by wafer fusion[J]. IEEE Photonics Technology Letters , 2005, 17(7):1477-1479.
YANG Y, SHEN W Z, LIU H C, et al . Near-infrared photon upconversion devices based on GaNAsSb active layer lattice matched to GaAs[J]. Applied Physics Letters , 2009, 94(9):093504.
BAN D, HAN S, LU Z H, et al . Near-infrared to visible light optical upconversion by direct tandem integration of organic light-emitting diode and inorganic photodetector[J]. Applied Physics Letters , 2007, 90(9):093108.
CHEN J, BAN D Y, FENG X D, et al . Enhanced efficiency in near-infrared inorganic/organic hybrid optical upconverter with an embedded mirror[J]. Journal of Applied Physics , 2008, 103(10):103112.
CHEN J, BAN D Y, HELANDER M G, et al . Near-IR optical upconverter with integrated heterojunction phototransistor and organic light-emitting diode[J]. IEEE Photonics Technology Letters , 2009, 21(19):1447-1449.
GUAN M, LI L S, CAO G H, et al . Organic light-emitting diodes with integrated inorganic photo detector for near-infrared optical up-conversion[J]. Organic Electronics , 2011, 12(12):2090-2094.
CHU X B, GUAN M, ZHANG Y, et al . Influences of organic-inorganic interfacial properties on the performance of a hybrid near-infrared optical upconverter[J]. RSC Advances , 2013, 3(45):23503-23507.
CHU X B, GUAN M, NIU L T, et al . Fast responsive and highly efficient optical upconverter based on phosphorescent OLED[J]. ACS Applied Materials & Interfaces , 2014, 6(21):19011-19016.
HIRAMOTO M, YOSHIMURA K, MIYAO T, et al . Up-conversion of red light to green by a new type of light transducer using organic electroluminescent diode combined with photoresponsive amorphous silicon carbide[J]. Applied Physics Letters , 1991, 58(11):1146-1148.
KATSUME T, HIRAMOTO M, YOKOYAMA M. High photon conversion in a light transducer combining organic electroluminescent diode with photoresponsive organic pigment film[J]. Applied Physics Letters , 1944, 64(19):2546-2548.
KATSUME T, HIRAMOTO M, YOKOYAMA M. Light amplification device using organic electroluminescent diode coupled with photoresponsive organic pigment film[J]. Applied Physics Letters , 1995, 66(22):2992-2994.
CHIKAMATSU M, ICHINO Y, TAKADA A, et al . Light up-conversion from near-infrared to blue using a photoresponsive organic light-emitting device[J]. Applied Physics Letters , 2002, 81(4):769-771.
YANG C J, CHO T Y, LIN C L, et al . Organic light-emitting devices integrated with solar cells:High contrast and energy recycling[J]. Applied Physics Letters , 2007, 90(17):173507.
OKAWA Y, NAKA S, OKADA H. Enhancement of electron injection in organic light-emitting diodes with photosensitive charge generation layer[J]. Japanese Journal of Applied Physics , 2011, 50(1S2):01BC11.
CHIU T L, CHANG W F, WU C C, et al . Tandem organic light-emitting diode and organic photovoltaic device inside polymer dispersed liquid crystal cell[J]. Journal of Display Technology , 2013, 9(10):787-793.
LIU S W, LI Y Z, LIN S Y, et al . Inducing the trap-site in an emitting-layer for an organic upconversion device exhibiting high current-gain ratio and low turn-on voltage[J]. Organic Electronics , 2016, 30:275-280.
LV W L, ZHONG J K, PENG Y Q, et al . Organic near-infrared upconversion devices:Design principles and operation mechanisms[J]. Organic Electronics , 2016, 31:258-265.
LI Y Z, SHIH C J, CHEN E H, et al . High current gain organic upconversion device using sublimated chloroaluminum phthalocyanine as a charge generation layer[C]// Proceedings of the 201623rd International Workshop on Active-Matrix Flatpanel Displays and Devices. Kyoto: IEEE, 2016: 115-116.
MELQUÍADES M C, ADERNE R, CUIN A, et al . Investigation of Tin(Ⅱ)2, 3-naphtalocyanine molecule used as near-infrared sensitive layer in organic up-conversion devices[J]. Optical Materials , 2017, 69:54-60.
LI D W, HU Y S, ZHANG N, et al . Near-infrared to visible organic upconversion devices based on organic light-emitting field effect transistors[J]. ACS Applied Materials & Interfaces , 2017, 9(41):36103-36110.
STRASSEL K, KAISER A, JENATSCH S, et al . Squaraine dye for a visibly transparent all-organic optical upconversion device with sensitivity at 1000 nm[J]. ACS Applied Materials & Interfaces , 2018, 10(13):11063-11069.
LIU S W, BIRING S, LI Y Z, et al . Near-infrared organic upconversion device with high image sensing quality[J]. SID Symposium Digest of Technical Paper , 2018, 49(1):1147-1150.
HE S J, WANG D K, YANG Z X, et al . Integrated tandem device with photoactive layer for near-infrared to visible upconversion imaging[J]. Applied Physics Letters , 2018, 112(24):243301.
ADERNE R, STRASSEL K, JENATSCH S, et al . Near-infrared absorbing cyanine dyes for all-organic optical upconversion devices[J]. Organic Electronics , 2019, 74:96-102.
ZHAO Y Q, YANG S Y, ZHAO J S, et al . PbS quantum dots based organic-inorganic hybrid infrared detecting and display devices[J]. Materials Letters , 2017, 196:176-178.
LI N, LAU Y S, XIAO Z, et al . NIR to visible light upconversion devices comprising an NIR charge generation layer and a perovskite emitter[J]. Advanced Optical Materials , 2018, 6(24):1801084.
ZHANG N, TANG H D, SHI K M, et al . High-performance all-solution-processed quantum dot near-infrared-to-visible upconversion devices for harvesting photogenerated electrons[J]. Applied Physics Letters , 2019, 115(22):221103.
TANG H D, SHI K M, ZHANG N, et al . Up-conversion device based on quantum dots with high-conversion efficiency over 6%[J]. IEEE Access , 2020, 8:71041-71049.
LI N, LAN Z J, CAI L F, et al . Advances in solution-processable near-infrared phototransistors[J]. Journal of Materials Chemistry C, 2019, 7(13):3711-3729.
LEE M H, CHOI W H, ZHU F R. Solution-processable organic-inorganic hybrid hole injection layer for high efficiency phosphorescent organic light-emitting diodes[J]. Optics Express , 2016, 24(6):A592-A603.
CHOI W H, TAM H L, ZHU F R, et al . High performance semitransparent phosphorescent white organic light emitting diodes with bi-directional and symmetrical illumination[J]. Applied Physics Letters , 2013, 102(15):153308.
WANG X, ZHOU J, ZHAO J, et al . High performance fluorescent and phosphorescent organic light-emitting diodes based on a charge-transfer-featured host material[J]. Organic Electronics , 2015, 21:78-85.
TAKAHASHI T, SEO S, NOWATARI H, et al . Emission mechanism in phosphorescent and fluorescent OLED utilizing energy transfer from exciplex to emitter[J] . Journal of the Society for Information Display , 2016, 24(6):360-370.
LAU Y S, LAN Z J, LI N, et al . Large-area cesium lead bromide perovskite light-emitting diodes realized by incorporating a hybrid additive[J]. ACS Applied Electronic Materials , 2020, 2(4):1113-1121.
ZHAO B, LAU Y S, SYED AA, et al . Effect of small molecule additives on efficient operation of all inorganic polycrystalline perovskite light-emitting diodes[J]. Journal of Materials Chemistry C, 2019, 7(18):5293-5298.
CHEN L X, LEE M H, WANG Y W, et al . Interface dipole for remarkable efficiency enhancement in all-solution-processable transparent inverted quantum dot light-emitting diodes[J]. Journal of Materials Chemistry C, 2018, 6(10):2596-2603.
CHEN Y H, CHEN J S, MA D G, et al . High power efficiency tandem organic light-emitting diodes based on bulk heterojunction organic bipolar charge generation layer[J]. Applied Physics Letters , 2011, 98(24):243309.
MUHIEDDINE K, ULLAH M, MAASOUMI F, et al . Hybrid area-emitting transistors:solution processable and with high aperture ratios[J]. Advanced Materials , 2015, 27(42):6677-6682.
MUCCINI M. A bright future for organic field-effect transistors[J]. Nature Materials , 2006, 5(8):605-613.
ULLAH M, TANDY K, LI J, et al . High-mobility, heterostructure light-emitting transistors and complementary inverters[J]. ACS Photonics , 2014, 1(10):954-959.
SONG L, HU Y S, LI D W, et al . Pixeled electroluminescence from multilayer heterostructure organic light-emitting transistors[J]. The Journal of Physical Chemistry C, 2015, 119(35):20237-20243.
MIAO J L, ZHANG F J. Recent progress on photomultiplication type organic photodetectors[J]. Laser & Photonics Reviews , 2019, 13(2):1800204.
CAO W R, LI J, CHEN H Z, et al . Transparent electrodes for organic optoelectronic devices:a review[J]. Journal of Photonics for Energy , 2014, 4(1):040990.
LIU Y F, DING T, WANG H R, et al . Improved injection properties of self-passivated degenerated transparent electrode for organic and perovskite light emitting devices[J]. Applied Surface Science , 2020, 504:144442.
0
浏览量
336
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621