
浏览全部资源
扫码关注微信
1.上海交通大学 电子信息与电气工程学院, 上海 200240
2.江苏省知识产权局, 江苏 南京 210036
[ "邓立昂(1997-), 男, 陕西西安人, 博士研究生, 2019年于西安电子科技大学获得学士学位, 主要从事基于薄膜晶体管的电路设计方面的研究。E-mail: lyon_deng@sjtu.edu.cn" ]
[ "郭小军(1981-), 男, 江苏南通人, 博士, 教授, 2007年于Surrey大学获得博士学位, 主要从事薄膜晶体管和柔性电子集成方面的研究。E-mail: x.guo@sjtu.edu.cn" ]
收稿日期:2020-10-09,
录用日期:2020-11-16,
纸质出版日期:2021-03
移动端阅览
邓立昂, 陈世林, 黄博天, 等. 基于低温多晶硅-氧化物半导体混合集成的薄膜晶体管显示背板技术[J]. 液晶与显示, 2021,36(3):420-431.
Li-ang DENG, Shi-lin CHEN, Bo-tian HUANG, et al. TFT display backplane technology based on low-temperature polysilicon-oxide semiconductor hybrid integration[J]. Chinese journal of liquid crystals and displays, 2021, 36(3): 420-431.
邓立昂, 陈世林, 黄博天, 等. 基于低温多晶硅-氧化物半导体混合集成的薄膜晶体管显示背板技术[J]. 液晶与显示, 2021,36(3):420-431. DOI: 10.37188/CJLCD.2020-0268.
Li-ang DENG, Shi-lin CHEN, Bo-tian HUANG, et al. TFT display backplane technology based on low-temperature polysilicon-oxide semiconductor hybrid integration[J]. Chinese journal of liquid crystals and displays, 2021, 36(3): 420-431. DOI: 10.37188/CJLCD.2020-0268.
低温多晶硅-氧化物半导体混合集成(Low temperature polycrystalline silicon and oxide,LTPO)的薄膜晶体管(thin-film transistor,TFT)背板技术融合了低温多晶硅和氧化物半导体TFT两者的优势,为低功耗、高性能显示以及功能化集成提供了新的发展机遇,获得了产业界和学术界的广泛关注。本文系统地总结和分析了LTPO相关技术与应用的研究进展以及面临的技术挑战。首先,讨论了分别针对液晶显示(Liquid crystal display,LCD)和有机发光二极管(Organic light emitting diode,OLED)显示的LTPO背板的集成方式,进一步总结分析了实现LTPO集成的器件结构和工艺挑战。此外,针对有源矩阵OLED显示,分析了LTPO技术用于设计兼容低帧率和高帧率驱动、具有内部补偿功能的像素电路的优势,以及在超低帧率(如1 Hz)驱动情况下,TFT器件稳定性带来的影响和相关的补偿驱动方法。最后,对LTPO技术进一步发展的可能趋势进行了展望。
Low temperature polycrystalline silicon and oxide (LTPO) thin-film transistor (TFT) backplane technology combines the advantages of both low temperature polycrystalline silicon and oxide semiconductor TFTs. It has received extensive attention from both industry and academia since it is promising for development of advanced displays with low power consumption
high performance and functional integration. This paper systematically summarizes and analyzes the research progress of technologies and applications related to LTPO and highlights the technical challenges. Firstly
the integration methods of LTPO backplanes for liquid crystal displays (LCDs) and organic light emitting diode (OLED) displays are discussed respectively. Then the challenges of device structures and processing methods for LTPO integration are further discussed. Meanwhile
the advantages of LTPO technology for designing pixel circuits to be compatible with both low and high frame rate driving are analyzed
as well as the internal compensation technologies. The impacts of TFT device stability and compensation methods for ultra-low frame rate (i.e. 1 Hz) driving are also included. Finally
the content of this paper is summarized
and the prospective trend of future LTPO technology is outlined.
CHEN H F, HA T H, SUNG J H, et al . Evaluation of LCD local-dimming-backlight system[J]. Journal of the Society for Information Display , 2010, 18(1): 57-65.
PARK J H, KIM Y J. Accurate power model for mobile AMOLED displays[J]. Electronics Letters , 2015, 51(7): 553-555.
KWA S, HAYEK G R, SHAH K R, et al . Panel self-refresh technology: decoupling image update from LCD panel refresh in mobile computing systems[J]. SID Symposium Digest of Technical Papers , 2012, 43(1): 644-646.
ANGELIS C T, DIMITRIADIS C A, SAMARAS I, et al . Study of leakage current in n-channel and p-channel polycrystalline silicon thin-film transistors by conduction and low frequency noise measurements[J]. Journal of Applied Physics , 1997, 82(8): 4095-4101.
NOMURA K, OHTA H, TAKAGI A, et al . Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature , 2004, 432(7016): 488-492.
HOSONO H. How we made the IGZO transistor[J]. Nature Electronics , 2018, 1(7): 428-428.
KAMIYA T, HOSONO H. Material characteristics and applications of transparent amorphous oxide semiconductors[J]. NPG Asia Materials , 2010, 2(1): 15-22.
HARA Y, KIKUCHI T, KITAGAWA H, et al . IGZO-TFT technology for large-screen 8K display[J]. Journal of the Society for Information Display , 2018, 26(3): 169-177.
SEKINE Y, FURUTANI K, SHIONOIRI Y, et al . Success in measurement the lowest off-state current of transistor in the world[J]. ECS Transactions , 2011, 37(1): 77-88.
CHANG T K, LIN C W, CHANG S. LTPO TFT technology for AMOLEDs[J]. SID Symposium Digest of Technical Papers , 2019, 50(1): 545-548.
LIN C L, CHENG M H, TU C D, et al . Highly reliable integrated gate driver circuit for large TFT-LCD applications[J]. IEEE Electron Device Letters , 2012, 33(5): 679-681.
YE J H, HUANG C L, CHEN M Y, et al . Reliability improvement of IGZO and LTPS hybrid TFTs array technology[J]. SID Symposium Digest of Technical Papers , 2018, 49(1): 128-131.
TADA M, MOCHIZUKI K, TSUNASHIMA T, et al . An advanced LTPS TFT-LCD using top-gate oxide TFT in pixel[J]. SID Symposium Digest of Technical Papers , 2018, 49(1): 117-120.
李裕蓉, 杨磊, 陈明阳. 负性液晶边缘场切换模式的亮线不良分析[J]. 液晶与显示, 2020, 35(10): 1044-1050.
LI Y R, YANG L, CHEN M Y. Analysis of line Mura for fringe field switching mode with negative liquid crystal[J]. Chinese Journal of Liquid Crystals and Displays , 2020, 35(10): 1044-1050. (in Chinese)
KIM J, CHUNG H J, LEE S W. A memory-in-pixel circuit for low-power liquid crystal displays with low temperature poly-silicon and oxide thin film transistors[J]. IEEE Electron Device Letters , 2019, 40(12): 1957-1960.
WAGER J F. Flat-panel-display backplanes: LTPS or IGZO for AMLCDs or AMOLED displays?[J]. Information Display , 2014, 30(2): 26-29.
OROUJI A A, KUMAR M J. Leakage current reduction techniques in poly-Si TFTs for active matrix liquid crystal displays: a comprehensive study[J]. IEEE Transactions on Device and Materials Reliability , 2006, 6(2): 315-325.
YONEBAYASHI R, TANAKA K, OKADA K, et al . High refresh rate and low power consumption AMOLED panel using top-gate n-oxide and p-LTPS TFTs[J]. Journal of the Society for Information Display , 2020, 28(4): 350-359.
解红军, 张小宝. 一种针对AMOLED器件劣化的电学补偿技术[J]. 液晶与显示, 2019, 34(4): 335-341.
XIE H J, ZHANG X B. Electronic-compensation technique for improving the degradation of AMOLED devices[J]. Chinese Journal of Liquid Crystals and Displays , 2019, 34(4): 335-341. (in Chinese)
苹果公司. 包括具有氧化物晶体管阈值电压补偿的显示器的电子设备: 中国, 109493806A[P]. 2019-03-19.
Apple Inc. Electronic device comprising a display with oxide transistor threshold voltage compensation: CN, 109493806A[P]. 2019-03-19. (in Chinese)
LIN C W, ONO S, GUPTA V. Organic light-emitting diode display with external compensation and anode reset: US 10672338[P]. 2020-06-02.
欧阳齐, 金武谦. TFT阵列基板及其制备方法、OLED触控显示装置: 中国, 111128874A[P]. 2020-05-08.
OUYANG Q, JIN W Q. TFT array substrate, preparation method thereof and OLED touch display device: CN, 111128874A[P]. 2020-05-08. (in Chinese)
欧阳齐, 金武谦. 薄膜晶体管阵列基板及其制备方法、OLED触控显示装置: 中国, 111129091A[P]. 2020-05-08.
OUYANG Q, JIN W Q. Thin film transistor array substrate, preparation method thereof and OLED touch display device: CN, 111129091A[P]. 2020-05-08. (in Chinese)
周天民, 王利忠, 杨维, 等. 显示基板及其制造方法、显示装置: 中国, 109300840A[P]. 2019-02-01.
ZHOU T M, WANG L Z, YANG W, et al . Display substrate, manufacture method thereof and display device: CN, 109300840A[P]. 2019-02-01. (in Chinese)
秦斌, 彭锦涛, 彭宽军, 等. 阵列基板及其制作方法、显示面板、电子设备: 中国, 109817645A[P]. 2019-05-28.
QIN B, PENG J T, PENG K J, et al . Array substrate, manufacturing method thereof, display panel and electronic equipment: CN, 109817645A[P]. 2019-05-28. (in Chinese)
宋振, 王国英. 一种显示基板及其制作方法、显示装置: 中国, 110299322A[P]. 2019-10-01.
SONG Z, WANG G Y. Display base plate and making method thereof and display device: CN, 110299322A[P]. 2019-10-01. (in Chinese)
袁永. 一种显示面板及显示装置: 中国, 109326633A[P]. 2019-02-12.
YUAN Y. Display panel and display device: CN, 109326633A[P]. 2019-02-12. (in Chinese)
孔祥永. 阵列基板的制作方法及显示面板: 中国, 111106132A[P]. 2020-05-05.
KONG X Y. Manufacturing method of array substrate and display panel: CN, 111106132A[P]. 2020-05-05. (in Chinese)
JIN G H, CHOI J, LEE W, et al . Simple fabrication of a three-dimensional CMOS inverter using p-type poly-Si and n-type amorphous Ga-In-Zn-O thin-film transistors[J]. IEEE Electron Device Letters , 2011, 32(9): 1236-1238.
HAN Y, GU P F, LIU F J, et al . Analysis between subgap density of state and NBIS of top gate a-IGZO TFTs[J]. SID Symposium Digest of Technical Papers , 2019, 50(S1): 813-815.
CHEN C D, YANG B R, LIU C, et al . Integrating poly-silicon and InGaZnO thin-film transistors for CMOS inverters[J]. IEEE Transactions on Electron Devices , 2017, 64(9): 3668-3671.
KIM H, JEONG D Y, LEE S, et al . A high-gain inverter with low-temperature poly-Si oxide thin-film transistors[J]. IEEE Electron Device Letters , 2019, 40(3): 411-414.
JEONG D Y, CHANG Y, YOON W G, et al . Low-temperature polysilicon oxide thin-film transistors with coplanar structure using six photomask steps demonstrating high inverter gain of 264 V·V -1 [J]. Advanced Engineering Materials , 2020, 22(4): 1901497.
CANTARELLA G, COSTA J, MEISTER T, et al . Review of recent trends in flexible metal oxide thin-film transistors for analog applications[J]. Flexible and Printed Electronics , 2020, 5(3): 033001.
RAHAMAN A, JEONG D Y, JANG J. High speed and wider swing, level shifter using low-temperature poly-silicon oxide TFTs[J]. IEEE Electron Device Letters , 2019, 40(11): 1772-1775.
CHEN Y F, LEE S, KIM H, et al . In-pixel temperature sensor for high-luminance active matrix micro-light-emitting diode display using low-temperature polycrystalline silicon and oxide thin-film-transistors[J]. Journal of the Society for Information Display , 2020, 28(6): 528-534.
KUMOMI H, YAGINUMA S, OMURA H, et al . Materials, devices, and circuits of transparent amorphous-oxide semiconductor[J]. Journal of Display Technology , 2009, 5(12): 531-540.
KAMIYA T, HOSONO H. Roles of hydrogen in amorphous oxide semiconductor[J]. ECS Transactions , 2013, 54(1): 103-113.
KWON J Y, JUNG J S, SON K S, et al . Investigation of light-induced bias instability in Hf-In-Zn-O thin film transistors: a cation combinatorial approach[J]. Journal of the Electrochemical Society , 2011, 158(4): H433-H437.
皇甫鲁江, 郑灿, 李云飞, 等. 一种LTPS-TFT AMOLED像素电路的理论研究[J]. 液晶与显示, 2017, 32(8): 614-621.
HUANGFU L J, ZHENG C, LI Y F, et al . LTPS-TFT threshold voltage compensation pixel circuit for AMOLED[J]. Chinese Journal of Liquid Crystals and Displays , 2017, 32(8): 614-621. (in Chinese)
WANG S S, LI J P, SHI R X, et al . Fluorinated indium-gallium-zinc oxide thin-film transistor with reduced vulnerability to hydrogen-induced degradation[J]. Journal of the Society for Information Display , 2020, 28(6): 520-527.
ITO K, MEHADI A, SANO M, et al . Development of high quality IGZO-TFT with same on-current as LTPS[J]. SID Symposium Digest of Technical Papers , 2020, 51(1): 343-346.
0
浏览量
990
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621