
浏览全部资源
扫码关注微信
吉林大学 电子科学与工程学院, 吉林 长春 130012
[ "赵越(1996-), 女, 吉林桦甸人, 硕士研究生, 2018年于吉林大学获得学士学位, 主要从事量子点合成、白光发光二极管的制备及应用方面的研究。E-mail:zhaoyue18@mails.jlu.edu.cn" ]
[ "张宇(1982-), 男, 吉林长春人, 博士, 教授, 2010年于吉林大学获得博士学位, 主要从事纳米光电材料与器件方面的研究。E-mail:yuzhang@jlu.edu.cn" ]
收稿日期:2020-10-10,
录用日期:2020-11-5,
纸质出版日期:2021-01
移动端阅览
赵越, 高旭鹏, 路坡, 等. 量子点白光LEDs及其在智慧照明中的应用[J]. 液晶与显示, 2021,36(1):187-202.
Yue ZHAO, Xu-peng GAO, Po LU, et al. Quantum dot-based white LEDs and their applications of smart lighting[J]. Chinese journal of liquid crystals and displays, 2021, 36(1): 187-202.
赵越, 高旭鹏, 路坡, 等. 量子点白光LEDs及其在智慧照明中的应用[J]. 液晶与显示, 2021,36(1):187-202. DOI: 10.37188/CJLCD.2020-0267.
Yue ZHAO, Xu-peng GAO, Po LU, et al. Quantum dot-based white LEDs and their applications of smart lighting[J]. Chinese journal of liquid crystals and displays, 2021, 36(1): 187-202. DOI: 10.37188/CJLCD.2020-0267.
量子点具有光谱随尺寸可调、发光效率高、光热和化学稳定性好及溶液加工性好等优点,使其在照明、显示等领域具有广泛的应用前景,成为近年来研究的热点。本文首先介绍了量子点材料的种类及其3种不同的核壳结构,随后对近年来量子点白光发光二极管(QD-WLED)的研究进展进行系统地描述和对比,重点分析了量子点产生白光的方法,LED器件结构及光电性能,最后总结了QD-WLED在可见光通信、健康照明、植物照明及光动力疗法等方面的应用,阐述了该领域所面临的挑战和未来发展前景。
Quantum dots have a series of advantages of spectrum adjustable with size
high luminous efficiency
good light
thermal and chemical stability
and good solution processability
making them have a wide range of application prospects in lighting
display and other fields and they have become a hot spot in recent years. This paper firstly introduces the types of quantum dot materials
then summarizes the three structures and preparation methods of core-shell quantum dot materials
and systematically describes their three different core-shell structures
and then systematically describes and compares the research progress of quantum dot white light-emitting diodes (QD-WLED) in recent years
focusing on the analysis of white light produced by quantum dots. Finally
it summarizes the application of QD-WLED in visible light communication
health lighting
plant lighting and photodynamic therapy
and expounds the challenges and the future development prospects of this field.
WANG L, ZHANG H R, ZHOU X H, et al . A dual-emitting core-shell carbon dot-silica-phosphor composite for LED plant grow light[J]. RSC Advances , 2017, 7(27):16662-16667.
POULET L, MASSA G D, MORROW R C, et al . Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation[J]. Life Sciences in Space Research , 2014, 2:43-53.
HOLBERT E. Advanced solid state lighting for aes deep space hab project[R]. NASA Technical Reportss Server. NASA, 2015.
SAIDZHONOV B M, ZAYTSEV V B, BEREKCHIIAN M V, et al . Highly luminescent copper-doped ultrathin CdSe nanoplatelets for white-light generation[J]. Journal of Luminescence , 2020, 222:117134.
VAN DER BOK J C, DEKKER D M, PEERLINGS M L J, et al . Luminescence line broadening of CdSe nanoplatelets and quantum dots for application in w-LEDs[J]. The Journal of Physical Chemistry C , 2020, 124(22):12153-12160.
NAKAMURA S, FASOL G. The Blue Laser Diode : GaN Based Light Emitters and Lasers [M]. Berlin, Heidelberg:Springer, 1997.
PATTISON P M, TSAO J Y, BRAINARD G C, et al . LEDs for photons, physiology and food[J]. Nature , 2018, 563(7732):493-500.
SCHUBERT E F, KIM J K. Solid-state light sources getting smart[J]. Science , 2005, 308(5726):1274-1278.
张平奇, 王丹, 吕振华, 等.健康显示的影响因素综述[J].液晶与显示, 2020, 35(9):981-990.
ZHANG P Q, WANG D, LYU Z H, et al . Review of determinants of healthy display[J]. Chinese Journal of Liquid Crystals and Displays , 2020, 35(9):981-990. (in Chinese)
BRUS L E. Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state[J]. Journal of Chemical Physics , 1984, 80(9):4403-4409.
JEONG B G, PARK Y S, CHANG J H, et al . Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking[J]. ACS Nano , 2016, 10(10):9297-9305.
FAN X B, YU S, WANG X, et al . Susceptible surface sulfide regulates catalytic activity of CdSe quantum dots for hydrogen photogeneration[J]. Advanced Materials , 2019, 31(7):1804872.
WANG J D, WANG X Y, TANG H S, et al . Ultrasensitive electrochemical detection of tumor cells based on multiple layer CdS quantum dots-functionalized polystyrene microspheres and graphene oxide-polyaniline composite[J]. Biosensors and Bioelectronics , 2018, 100:1-7.
GUIDELLI E J, LIGNOS I, YOO J J, et al . Mechanistic insights and controlled synthesis of radioluminescent ZnSe quantum dots using a microfluidic reactor[J]. Chemistry of Materials , 2018, 30(23):8562-8570.
WANG Y, WANG P P, WU Y, et al . A cathodic "signal-on" photoelectrochemical sensor for Hg 2+ detection based on ion-exchange with ZnS quantum dots[J]. Sensors and Actuators B: Chemical , 2018, 254:910-915.
XU Z H, LI Y, LI J Z, et al . Formation of size-tunable and nearly monodisperse InP nanocrystals:chemical reactions and controlled synthesis[J]. Chemistry of Materials , 2019, 31(14):5331-5341.
YAN L, SHEN X Y, ZHANG Y, et al . Near-infrared light emitting diodes using PbSe quantum dots[J]. RSC Advances , 2015, 5(67):54109-54114.
REN Z W, SUN J K, LI H, et al . Bilayer PbS quantum dots for high-performance photodetectors[J]. Advanced Materials , 2017, 29(23):1702055.
ALLEN P M, BAWENDI M G. Ternary Ⅰ-Ⅲ-Ⅵ quantum dots luminescent in the red to near-infrared[J]. Journal of the American Chemical Society , 2008, 130(29):9240-9241.
MOLAEI M J. Carbon quantum dots and their biomedical and therapeutic applications:a review[J]. RSC Advances , 2019, 9(12):6460-6481.
YIN W X, LIU X, ZHANG X Y, et al . Synthesis of tungsten disulfide and molybdenum disulfide quantum dots and their applications[J]. Chemistry of Materials , 2020, 32(11):4409-4424.
吴静燕, 何大伟, 王永生, 等.溶剂热法制备的二硫化钼量子点在多巴胺荧光检测中的应用[J].发光学报, 2019, 40(10):1207-1214.
WU J Y, HE D W, WANG Y S, et al . Facile solvothermal fabrication of MoS 2 quantum dots for highly fluorescence detection of dopamine[J]. Chinese Journal of Luminescence , 2019, 40(10):1207-1214. (in Chinese)
SONG J Z, LI J H, LI X M, et al . Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX 3 )[J]. Advanced Materials , 2015, 27(44):7162-7167.
曾海波, 董宇辉.钙钛矿量子点:机遇与挑战[J].发光学报, 2020, 41(8):940-944.
ZENG H B, DONG Y H. Perovskite quantum dots:opportunities and challenges[J]. Chinese Journal of Luminescence , 2020, 41(8):940-944. (in Chinese)
PENG Z A, PENG X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J]. Journal of the American Chemical Society , 2001, 123(1):183-184.
KORTAN A R, HULL R, OPILA R L, et al . Nucleation and growth of CdSe on ZnS quantum crystallite seeds and vice versa, in inverse micelle media[J] . Journal of the American Chemical Society , 1990, 112(4):1327-1332.
REISS P, PROTIōRE M, LI L. Core/shell semiconductor nanocrystals[J]. Small , 2009, 5(2):154-168.
BAE W K, CHAR K, HUR H, et al . Single-step synthesis of quantum dots with chemical composition gradients[J]. Chemistry of Materials , 2008, 20(2):531-539.
TALAPIN D V, ROGACH A L, KORNOWSKI A, et al . Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture[J]. Nano Letters , 2001, 1(4):207-211.
REISS P, BLEUSE J, PRON A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion[J]. Nano Letters , 2002, 2(7):781-784.
KIM S, FISHER B, EISLER H J, et al . Type-Ⅱ quantum dots:CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures[J]. Journal of the American Chemical Society , 2003, 125(38):11466-11467.
IVANOV S A, PIRYATINSKI A, NANDA J, et al . Type-Ⅱ Core/Shell CdS/ZnSe nanocrystals:synthesis, electronic structures, and spectroscopic properties[J]. Journal of the American Chemical Society , 2007, 129(38):11708-11719.
XIE R, ZHONG X, BASCHÉ T. Synthesis, characterization, and spectroscopy of type-Ⅱ core/shell semiconductor nanocrystals with ZnTe cores[J]. Advanced Materials , 2005, 17(22):2741-2745.
JANG E, KIM Y, WON Y H, et al . Environmentally friendly InP-based quantum dots for efficient wide color gamut displays[J]. ACS Energy Letters , 2020, 5(4):1316-1327.
PARK J, KIM S W. CuInS 2 /ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence[J]. Journal of Materials Chemistry , 2011, 21(11):3745-3750.
BAE W K, PADILHA L A, PARK Y S, et al . Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination[J]. ACS Nano , 2013, 7(4):3411-3419.
TALAPIN D V, MEKIS I, GÖTZINGER S, et al . CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-shell-shell nanocrystals[J]. The Journal of Physical Chemistry B , 2004, 108(49):18826-18831.
WANG X B, LI W W, SUN K. Stable efficient CdSe/CdS/ZnS core/multi-shell nanophosphors fabricated through a phosphine-free route for white light-emitting-diodes with high color rendering properties[J]. Journal of Materials Chemistry , 2011, 21(24):8558-8565.
JANG E, JUN S, JANG H, et al . White-light-emitting diodes with quantum dot color converters for display backlights[J]. Advanced Materials , 2010, 22(28):3076-3080.
REGULACIO M D, HAN M Y. Composition-tunable alloyed semiconductor nanocrystals[J]. Accounts of Chemical Research , 2010, 43(5):621-630.
LI Y, HOU X Q, DAI X L, et al . Stoichiometry-controlled InP-based quantum dots:Synthesis, photoluminescence, and electroluminescence[J]. Journal of the American Chemical Society , 2019, 141(16):6448-6452.
TAN Z A, ZHANG Y, XIE C, et al . Near-band-edge electroluminescence from heavy-metal-free colloidal quantum dots[J]. Advanced Materials , 2011, 23(31):3553-3558.
SHEA-ROHWER L E, MARTIN J E, CAI X C, et al . Red-emitting quantum dots for solid-state lighting[J]. ECS Journal of Solid State Science and Technology , 2013, 2(2):R3112-R3118.
BAILEY R E, NIE S M. Alloyed semiconductor quantum dots:Tuning the optical properties without Changing the particle size[J]. Journal of the American Chemical Society , 2003, 125(23):7100-7106.
ZHENG Y, YANG Z, YING J Y. Aqueous synthesis of glutathione-capped ZnSe and Zn 1- x Cd x Se alloyed quantum dots[J]. Advanced Materials , 2007, 19(11):1475-1479.
ZHONG X H, FENG Y Y, KNOLL W, et al . Alloyed Zn x Cd 1- x S nanocrystals with highly narrow luminescence spectral width[J]. Journal of the American Chemical Society , 2003, 125(44):13559-13563.
JUN S, JANG E. Interfused semiconductor nanocrystals:brilliant blue photoluminescence and electroluminescence[J]. Chemical Communications , 2005(36):4616-4618.
JUN S, JANG E. Bright and stable alloy core/multishell quantum dots[J]. Angewandte Chemie International Edition , 2013, 52(2):679-682.
JANG H S, YANG H, KIM S W, et al . White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr 3 SiO 5 :Ce 3+ , Li + phosphors[J]. Advanced Materials , 2008, 20(14):2696-2702.
SHEN C Y, LI K, HOU Q L, et al . White LED based on YAG:Ce, Gd phosphor and CdSe-ZnS core/shell quantum dots[J]. IEEE Photonics Technology Letters , 2010, 22(12):884-886.
VERMA A, SHARMA S K, LIN C H, et al . Fabrication of highly efficient hybrid device structure based white light emitting diodes[J]. Optical and Quantum Electronics , 2020, 52(7):353.
KIM S, KIM T, KANG M, et al . Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes[J]. Journal of the American Chemical Society , 2012, 134(8):3804-3809.
WANG X B, YAN X S, LI W W, et al . Doped quantum dots for white-light-emitting diodes without reabsorption of multiphase phosphors[J]. Advanced Materials , 2012, 24(20):2742-2747.
XUAN T T, LIU J Q, XIE R J, et al . Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition[J]. Chemistry of Materials , 2015, 27(4):1187-1193.
LIM J, JUN S, JANG E, et al . Preparation of highly luminescent nanocrystals and their application to light-emitting diodes[J]. Advanced Materials , 2007, 19(15):1927-1932.
DENG Z T, YAN H, LIU Y. Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method[J]. Journal of the American Chemical Society , 2009, 131(49):17744-17745.
BAE W K, NAM M K, CHAR K, et al . Gram-scale one-pot synthesis of highly luminescent blue emitting Cd 1 x Zn x S/ZnS Nanocrystals[J]. Chemistry of Materials , 2008, 20(16):5307-5313.
SADRA S, BASKARAN G K, RUSTAMZHON M, et al . Quantum dot white LEDs with high luminous efficiency[J]. Optica , 2018, 5(7):793-802.
KIM K, JEONG S, WOO J Y, et al . Successive and large-scale synthesis of InP/ZnS quantum dots in a hybrid reactor and their application to white LEDs[J]. Nanotechnology , 2012, 23(6):065602.
KUMAR B G, SADEGHI S, MELIKOV R, et al . Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs[J]. Nanotechnology , 2018, 29(24):345605.
YUAN X, HUA J, ZENG R S, et al . Efficient white light emitting diodes based on Cu-doped ZnInS/ZnS core/shell quantum dots[J]. Nanotechnology , 2014, 25(43):435202.
ZHAO J F, HUANG M L, ZHAO N, et al . Effect of Sn grain orientation on Cu diffusion in SnAgCu solder interconnect undergoing electromigration[C]// Proceedings of 2015 16th International Conference on Electronic Packaging Technology . Changsha, China: IEEE, 2015: 1275-1278.
JIANG T T, SHEN M H, DAI P, et al . Cd-free Cu-Zn-In-S/ZnS quantum dots@SiO 2 multiple cores nanostructure:preparation and application for white LEDs[J]. Nanotechnology , 2017, 28(43):435702.
ZHANG Z L, LIU D, LI D Z, et al . Dual emissive Cu:InP/ZnS/InP/ZnS nanocrystals:single-source "greener" emitters with flexibly tunable emission from visible to near-infrared and their application in white light-emitting diodes[J]. Chemistry of Materials , 2015, 27(4):1405-1411.
HUANG B, DAI Q, ZHUO N Z, et al . Bicolor Mn-doped CuInS 2 /ZnS core/shell nanocrystals for white light-emitting diode with high color rendering index[J]. Journal of Applied Physics , 2014, 116(9):094303.
SAPRA S, MAYILO S, KLAR T A, et al . Bright white-light emission from semiconductor nanocrystals:by chance and by design[J]. Advanced Materials , 2007, 19(4):569-572.
SHARMA V K, GUZELTURK B, ERDEM T, et al . Tunable white-light-emitting Mn-doped ZnSe nanocrystals[J]. ACS Applied Materials & Interfaces , 2014, 6(5):3654-3660.
LIU B Z, LI R F, HU L, et al . White light-emitting quantum dot diodes and tuning of luminescence processes[J]. Applied Physics A , 2014, 116(3):941-945.
PARK J H, KIM J Y, CHIN B D, et al . White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer[J]. Nanotechnology , 2004, 15(9):1217-1220.
LI Y Q, RIZZO A, CINGOLANI R, et al . Bright white-light-emitting device from ternary nanocrystal composites[J]. Advanced Materials , 2006, 18(19):2545-2548.
BAE W K, LIM J, LEE D, et al . R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices[J]. Advanced Materials , 2014, 26(37):6387-6393.
LEE K H, HAN C Y, KANG H D, et al . Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer[J]. ACS Nano , 2015, 9(11):10941-10949.
HONG A, KIM J, KWAK J. Sunlike white quantum dot light-emitting diodes with high color rendition quality[J]. Advanced Optical Materials , 2020, doi:10.1002/adom.202001051.
LEE K H, HAN C Y, JANG E P, et al . Full-color capable light-emitting diodes based on solution-processed quantum dot layer stacking[J]. Nanoscale , 2018, 10(14):6300-6305.
WANG L X, PAN J Y, QIAN J P, et al . A highly efficient white quantum dot light-emitting diode employing magnesium doped zinc oxide as the electron transport layer based on bilayered quantum dot layers[J]. Journal of Materials Chemistry C , 2018, 6(30):8099-8104.
ZHANG H, SU Q, SUN Y Z, et al . Efficient and color stable white quantum-dot light-emitting diodes with external quantum efficiency over 23%[J]. Advanced Optical Materials , 2018, 6(16):1800354.
JIANG C B, ZOU J H, LIU Y, et al . Fully solution-processed tandem white quantum-dot light-emitting diode with an external quantum efficiency exceeding 25%[J]. ACS Nano , 2018, 12(6):6040-6049.
CAO F, ZHAO D W, SHEN P Y, et al . High-efficiency, solution-processed white quantum dot light-emitting diodes with serially stacked red/green/blue units[J]. Advanced Optical Materials , 2018, 6(20):1800652.
ZHANG Y, XIE C, SU H P, et al . Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes[J]. Nano Letters , 2011, 11(2):329-332.
LIU Z Y, TANG A W, XIE Y H, et al . Solution-processed planar white light-emitting diodes based on cadmium-free Cu-In-Zn-S/ZnS quantum dots and polymer[J]. Organic Electronics , 2017, 45:20-25.
PAN J, SHANG Y Q, YIN J, et al . Bidentate ligand-passivated CsPbI 3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes[J]. Journal of the American Chemical Society , 2018, 140(2):562-565.
王壮苗, 彭小改, 孙雨, 等.钙钛矿CSPB X 3 量子点材料制备进展[J].应用技术学报, 2020, 20(2):126-134.
WANG Z M, PENG X G, SUN Y, et al . Research progress in the preparation of perovskite CsPb X 3 quantum dot materials[J]. Journal of Technology , 2020, 20(2):126-134. (in Chinese)
XIAO X T, TANG H D, ZHANG T Q, et al . Improving the modulation bandwidth of LED by CdSe/ZnS quantum dots for visible light communication[J]. Optics Express , 2016, 24(19):21577-21586.
LIN C C, LIU R S. Advances in phosphors for light-emitting diodes[J]. The Journal of Physical Chemistry Letters , 2011, 2(11):1268-1277.
TANAKA Y, HARUYAMA S, NAKAGAWA M. Wireless optical transmissions with white colored LED for wireless home links[C]// Proceedings of the 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications . London, UK: IEEE, 2000: 1325-1329.
XIAO H, XIAO X T, WANG K, et al . Optimization of illumination performance of trichromatic white light-emitting diode and characterization of its modulation bandwidth for communication applications[J] . IEEE Photonics Journal , 2018, 10(5):8201511.
XUE D K, RUAN C, ZHANG Y, et al . Enhanced bandwidth of white light communication using nanomaterial phosphors[J]. Nanotechnology , 2018, 29(45):455708.
王昊丰, 李梓文, 郑传涛.基于量子点白光LED的可见光通信系统[J].吉林大学学报(信息科学版), 2019, 37(2):113-118.
WANG H F, LI Z W, ZHENG C T. Visible light communication system based on quantum dot white LED[J]. Journal of Jilin University (Information Science Edition) , 2019, 37(2):113-118. (in Chinese)
TIAN Z, TIAN P F, ZHOU X J, et al . Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication[J]. Nanoscale , 2019, 11(8):3489-3494.
王晓瑜, 陈东川, 朱书贤, 等.防蓝光显示技术进展[J].液晶与显示, 2020, 35(1):1-11.
WANG X Y, CHEN D C, ZHU S X, et al . Progress of anti-blue light hazard in display technology[J]. Chinese Journal of Liquid Crystals and Displays , 2020, 35(1):1-11. (in Chinese)
MARTINY K. Chronotherapeutics for affective disorders:A clinician's manual for light and wake therapy[J]. Acta Psychiatrica Scandinavica , 2010, 122(1):86.
沈雪华, 陈焕庭, 陈赐海, 等.白光LED光谱特性及司辰节律因子[J].发光学报, 2019, 40(12):1514-1522.
SHEN X H, CHEN H T, CHEN C H, et al . Spectral characteristics and circadian action factor of white LEDs[J]. Chinese Journal of Luminescence , 2019, 40(12):1514-1522. (in Chinese)
YAO Q, WANG H B, WANG Y Z, et al . Tri-chromatic quantum-dot synthesized sun-like white light-emitting diodes reaching maximum spectral similarity of 0.98[J]. Optics & Laser Technology , 2020, 121:105828.
HU G Q, SUN Y Q, ZHUANG J L, et al . Enhancement of fluorescence emission for tricolor quantum dots assembled in polysiloxane toward solar spectrum-simulated white light-emitting devices[J]. Small , 2020, 16(1):1905266.
ZHANG X Y, ZHANG Y, WANG Y, et al . Color-switchable electroluminescence of carbon dot light-emitting diodes[J]. ACS Nano , 2013, 7(12):11234-11241.
YIN W X, BAI X, ZHANG X Y, et al . Multicolor light-emitting diodes with MoS 2 quantum dots[J]. Particle & Particle Systems Characterization , 2019, 36(2):1800362.
ZHAO Y, XUE D K, WANG J T, et al . Smart quantum dot LEDs with simulated solar spectrum for intelligent lighting[J]. Nanotechnology , 2020, 31(50):505207.
FOLTA K M, CARVALHO S D. Photoreceptors and control of horticultural plant traits[J]. HortScience , 2015, 50(9):1274-1280.
SONG J W. Grow light for plant factory using quantum dot LED[J]. Journal of International Council on Electrical Engineering , 2016, 6(1):13-16.
PERRY T S. Quantum dots shift sunlight's spectrum to speed plant growth.[EB/OL] [2020-06-04] . http://spectrum.ieee.org/view-from-the-valley/atwork/start-ups/quantum-dots-shift-sunlights-to-speed-plant-growth http://spectrum.ieee.org/view-from-the-valley/atwork/start-ups/quantum-dots-shift-sunlights-to-speed-plant-growth
PETERS A. This 'quantum dot' tech helps grow more plants by making sunlight more powerful.[EB/OL] [2020-02-24] . http://www.fastcompany.com/90506355/this-quantum-dot-tech-helps-grow-more-plants-by-making-sunlight-move-powerful?position=3&campaign-date=12192020 http://www.fastcompany.com/90506355/this-quantum-dot-tech-helps-grow-more-plants-by-making-sunlight-move-powerful?position=3&campaign-date=12192020
JORI G, PRATESI R, SCALVINI M. A multi-LED source for photoradiation therapy[M]//ANDREONI A, CUBEDDU R. Porphyrins in Tumor Phototherapy . Boston, MA: Springer, 1984: 301-308.
CHEN H, YEH T H, HE J, et al . Flexible quantum dot light-emitting devices for targeted photomedical applications[J]. Journal of the Society for Information Display , 2018, 26(5):296-303.
CHEN H, HE J, LANZAFAME R, et al . Quantum dot light emitting devices for photomedical applications[J]. Journal of the Society for Information Display , 2017, 25(3):177-184.
0
浏览量
222
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621