
浏览全部资源
扫码关注微信
河南大学 特种功能材料重点实验室, 河南 开封 475004
[ "关小雅(1997-), 女, 湖北荆州人, 硕士研究生, 2017年于武汉科技大学获得学士学位, 主要从事量子点发光显示器件应用方面的研究。E-mail:Guanxiaoya@henu.edu.cn" ]
[ "申怀彬(1981-), 男, 河南开封人, 博士, 教授, 2011年于吉林大学获得博士学位, 主要从事荧光量子点材料的合成、组装、规模化制备以及基于荧光量子点的发光器件和发光薄膜应用方面的研究。E-mail:shenhuaibin@henu.edu.cn" ]
收稿日期:2020-10-05,
录用日期:2020-11-1,
纸质出版日期:2021-01
移动端阅览
关小雅, 王洪哲, 申怀彬, 等. 面向显示应用的量子点发光器件研究进展[J]. 液晶与显示, 2021,36(1):176-186.
Xiao-ya GUAN, Hong-zhe WANG, Huai-bin SHEN, et al. Research progress of quantum dot light-emitting devices for display application[J]. Chinese journal of liquid crystals and displays, 2021, 36(1): 176-186.
关小雅, 王洪哲, 申怀彬, 等. 面向显示应用的量子点发光器件研究进展[J]. 液晶与显示, 2021,36(1):176-186. DOI: 10.37188/CJLCD.2020-0263.
Xiao-ya GUAN, Hong-zhe WANG, Huai-bin SHEN, et al. Research progress of quantum dot light-emitting devices for display application[J]. Chinese journal of liquid crystals and displays, 2021, 36(1): 176-186. DOI: 10.37188/CJLCD.2020-0263.
胶体量子点是一种半径接近于激子玻尔半径的新型优质光电材料,其特殊的尺寸效应使其能通过调整尺寸大小实现高纯度的三原色发光、连续可调的光谱以及宽色域。量子点特殊的核壳结构保证了其良好的光/热稳定性;同时,量子点还具有优异的可溶液处理特性,是显示领域研究的热门材料。基于量子点构筑的量子点发光二极管器件也一直被看作是有望取代有机发光二极管的极具潜力的技术。过去的几十年间,量子点发光二极管取得了巨大的成功和快速的发展,被看作是显示领域最具潜力的优质候选材料之一。因此,对量子点发光器件性能进行研究分析并优化,对于加快其商业市场化有很重要的意义。本文从量子点发光器件优化到大面积生产的角度总结了国内外研究者在构筑高效、稳定的面向显示应用的量子点发光器件的研究进展,并分析了其未来发展将面临的困难和挑战。
Colloidal quantum dots (QDs) are a new type of high-quality optoelectronic material with a radius close to the Bohr radius of the exciton. Its special size effect enables QDs to achieve high-purity three primary color luminescence
continuously adjustable emissions and wide color gamut by adjusting the size of QDs. In addition
the special core-shell structure ensures that QDs have good photo/thermal stability. At the same time
QDs also have excellent solution-processable properties. Since being discovered in 1990s
QDs have become popular research materials in the field of display. Quantum dot light-emitting diodes (QLEDs) based on QDs have also been regarded as the most promising technology to replace organic light-emitting diodes. In the past few decades
QLEDs have achieved such great success to be regarded as one of the most promising materials in the display field. Therefore
researching
analyzing and optimizing the performance of QLEDs devices are of great significance for accelerating their commercial marketization. From the perspective of QLEDs devices optimization to the large-area QLEDs production
the research progresses of domestic and foreign researchers in the direction of constructing efficient and stable QLEDs for display applications are summarized
and the difficulties and challenges we are going to face in the future development of QLEDs are aralyzed.
MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse Cd E ( E =sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society , 1993, 115(19):8706-8715.
RABANI E, HETéNYI B, BERNE B J, et al . Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium[J]. The Journal of Chemical Physics , 1999, 110(11):5355-5369.
YANG Y X, ZHENG Y, CAO W R, et al . High-efficiency light-emitting devices based on quantum dots with tailored nanostructures[J]. Nature Photonics , 2015, 9(4):259-266.
BI Y G, FENG J, LIU Y S, et al . Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation[J]. Scientific Reports , 2014, 4(1):7108.
SONG J J, WANG O Y, SHEN H B, et al . Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer[J]. Advanced Functional Materials , 2019, 29(33):1808377.
LI X Y, LIN Q L, SONG J J, et al . Quantum-dot light-emitting diodes for outdoor displays with high stability at high brightness[J]. Advanced Optical Materials , 2020, 8(2):1901145.
COE S, WOO W K, BAWENDI M, et al . Electroluminescence from single monolayers of nanocrystals in molecular organic devices[J]. Nature , 2002, 420(6917):800-803.
张锋, 薛建设, 喻志农, 等.量子点发光在显示器件中的应用[J].液晶与显示, 2012, 27(2):163-167.
ZHANG F, XUE J S, YU Z N, et al . Quantum-dot light emitting device for displays[J]. Chinese Journal of Liquid Crystals and Displays , 2012, 27(2):163-167. (in Chinese)
SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al . Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics , 2013, 7(1):13-23.
QIAN L, ZHENG Y, XUE J G, et al . Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures[J]. Nature Photonics , 2011, 5(9):543-548.
BAE W K, PARK Y S, LIM J, et al . Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes[J]. Nature Communications , 2013, 4(1):2661.
DAI X L, ZHANG Z X, JIN Y Z, et al . Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature , 2014, 515(7525):96-99.
ZHANG Z X, YE Y X, PU C D, et al . High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots[J]. Advanced Materials , 2018, 30(28):1801387.
SHEN H B, GAO Q, ZHANG Y B, et al . Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency[J]. Nature Photonics , 2019, 13(3):192-197.
SHEN H B, CAO W R, SHEWMON N T, et al . High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes[J]. Nano Letters , 2015, 15(2):1211-1216.
SHEN H B, WANG S, WANG H Z, et al . Highly efficient blue-green quantum dot light-emitting diodes using stable low-cadmium quaternary-alloy ZnCdSSe/ZnS core/shell nanocrystals[J]. ACS Applied Materials & Interfaces , 2013, 5(10):4260-4265.
SHEN H B, WANG H Z, ZHOU C H, et al . Large scale synthesis of stable tricolor Zn 1- x Cd x Se core/multishell nanocrystals via a facile phosphine-free colloidal method[J]. Dalton Transactions , 2011, 40(36):9180-9188.
BROWN P R, KIM D, LUNT R R, et al . Energy level modification in lead sulfide quantum dot thin films through ligand exchange[J]. ACS Nano , 2014, 8(6):5863-5872.
DAI X L, DENG Y Z, PENG X G, et al . Quantum-dot light-emitting diodes for large-area displays:towards the dawn of commercialization[J]. Advanced Materials , 2017, 29(14):1607022.
AKSELROD G M, PRINS F, POULIKAKOS L V, et al . Subdiffusive exciton transport in quantum dot solids[J]. Nano Letters , 2014, 14(6):3556-3562.
SHEN H B, LIN Q L, CAO W R, et al . Efficient and long-lifetime full-color light-emitting diodes using high luminescence quantum yield thick-shell quantum dots[J]. Nanoscale , 2017, 9(36):13583-13591.
TVRDY K, FRANTSUZOV P A, KAMAT P V. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America , 2011, 108(1):29-34.
BOZYIGIT D, YAREMA O, WOOD V. Origins of low quantum efficiencies in quantum dot LEDs[J]. Advanced Functional Materials , 2013, 23(24):3024-3029.
CAO W R, XIANG C Y, YANG Y X, et al . Highly stable QLEDs with improved hole injection via quantum dot structure tailoring[J]. Nature Communications , 2018, 9(1):2608.
LIU D Q, CAO S, WANG S Y, et al . Highly stable red quantum dot light-emitting diodes with long T 95 operation lifetimes[J]. The Journal of Physical Chemistry Letters , 2020, 11(8):3111-3115.
LI Z H, HU Y X, SHEN H B, et al . Efficient and long-life green light-emitting diodes comprising tridentate thiol capped quantum dots[J]. Laser & Photonics Reviews , 2017, 11(1):1600227.
PU C D, DAI X L, SHU Y F, et al . Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots[J]. Nature Communications , 2020, 11(1):937.
GHOSH A P, GERENSER L J, JARMAN C M, et al . Thin-film encapsulation of organic light-emitting devices[J]. Applied Physics Letters , 2005, 86(22):223503.
JI W Y, LIU S H, ZHANG H, et al . Ultrasonic spray processed, highly efficient all-inorganic quantum-dot light-emitting diodes[J]. ACS Photonics , 2017, 4(5):1271-1278.
SU Q, SUN Y Z, ZHANG H, et al . Origin of positive aging in quantum-dot light-emitting diodes[J]. Advanced Science , 2018, 5(10):1800549.
ZHU R D, LUO Z Y, WU S T. Light extraction analysis and enhancement in a quantum dot light emitting diode[J]. Optics Express , 2014, 22(S7):A1783-A1798.
ZHOU L, OU Q D, CHEN J D, et al . Light manipulation for organic optoelectronics using bio-inspired moth's eye nanostructures[J]. Scientific Reports , 2014, 4:4040.
WEI J, XU R P, LI Y Q, et al . Enhanced light harvesting in perovskite solar cells by a bioinspired nanostructured back electrode[J]. Advanced Energy Materials , 2017, 7(20):1700492.
LIANG H W, ZHU R D, DONG Y J, et al . Enhancing the outcoupling efficiency of quantum dot LEDs with internal nano-scattering pattern[J]. Optics Express , 2015, 23(10):12910-12922.
LIM J, BAE W K, LEE D, et al . InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability[J]. Chemistry of Materials , 2011, 23(20):4459-4463.
YANG X Y, DIVAYANA Y, ZHAO D W, et al . A bright cadmium-free, hybrid organic/quantum dot white light-emitting diode[J]. Applied Physics Letters , 2012, 101(23):233110.
LIM J, PARK M, BAE W K, et al . Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots[J]. ACS Nano , 2013, 7(10):9019-9026.
CAO F, WANG S, WANG F J, et al . A layer-by-layer growth strategy for large-size InP/ZnSe/ZnS core-shell quantum dots enabling high-efficiency light-emitting diodes[J]. Chemistry of Materials , 2018, 30(21):8002-8007.
WON Y H, CHO O, KIM T, et al . Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes[J]. Nature , 2019, 575(7784):634-638.
PARK J P, LEE J J, KIM S W. Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process[J]. Scientific Reports , 2016, 6(1):30094.
ZHANG H, HU N, ZENG Z P, et al . High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots[J]. Advanced Optical Materials , 2019, 7(7):1801602.
ZHANG H, MA X Y, LIN Q L, et al . High-brightness blue InP quantum dot-based electroluminescent devices:the role of shell thickness[J]. The Journal of Physical Chemistry Letters , 2020, 11(3):960-967.
WU Z H, LIU P, ZHANG W D, et al . Development of InP quantum dot-based light-emitting diodes[J]. ACS Energy Letters , 2020, 5(4):1095-1106.
CHO H, PARK S, SHIN H, et al . Highly efficient deep blue Cd-free quantum dot light-emitting diodes by a p-type doped emissive layer[J]. Small , 2020, 16(40):2002109.
JI B T, KOLEY S, SLOBODKIN I, et al . ZnSe/ZnS core/shell quantum dots with superior optical properties through thermodynamic shell growth[J]. Nano Letters , 2020, 20(4):2387-2395.
曾海波, 董宇辉.钙钛矿量子点:机遇与挑战[J].发光学报, 2020, 41(8):940-944.
ZENG H B, DONG Y H. Perovskite quantum dots:opportunities and challenges[J]. Chinese Journal of Luminescence , 2020, 41(8):940-944. (in Chinese)
DE GANS B J, DUINEVELD P C, SCHUBERT U S. Inkjet printing of polymers:state of the art and future developments[J]. Advanced Materials , 2004, 16(3):203-213.
SINGH M, HAVERINEN H M, DHAGAT P, et al . Inkjet printing-process and its applications[J]. Advanced Materials , 2010, 22(6):673-685.
LEE K H, LEE J H, KANG H D, et al . Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots[J]. ACS Nano , 2014, 8(5):4893-4901.
陈文斌, 郭文瑞, 牟婉莹, 等.喷墨打印和旋涂法制备有机电致发光显示器件中空穴注入及发光层的比较研究[J].发光学报, 2018, 39(10):1451-1457.
CHEN W B, GUO W R, MOU W Y, et al . Comparing of inkjet printing versus spin coating for preparing fine structure hole transfer and emitting layers in OLED display construction[J]. Chinese Journal of Luminescence , 2018, 39(10):1451-1457. (in Chinese)
JIANG C B, ZHONG Z M, LIU B Q, et al . Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices[J]. ACS Applied Materials & Interfaces , 2016, 8(39):26162-26168.
KIM L A, ANIKEEVA P O, COE-SULLIVAN S A, et al . Contact printing of quantum dot light-emitting devices[J]. Nano Letters , 2008, 8(12):4513-4517.
CHOI M K, YANG J, KANG K, et al . Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing[J]. Nature Communications , 2015, 6(1):7149.
0
浏览量
236
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621