
浏览全部资源
扫码关注微信
吉林大学 电子科学与工程学院 集成光电子学国家重点实验室, 吉林 长春 130012
[ "于超(1997-), 男, 黑龙江齐齐哈尔人, 硕士研究生, 2019年于黑龙江大学获得学士学位, 主要从事喷墨打印钙钛矿光电器件方面的研究。E-mail:chaoyu19@mails.jlu.edu.cn" ]
[ "段羽(1978-), 男, 吉林长春人, 博士, 教授, 2006年于吉林大学获得博士学位, 主要从事柔性透明导电电极、光电子器件薄膜封装、有机电致发光器件、钙钛矿光伏及照明、智能窗系统以及水汽透过测试系统等方面的研究。E-mail:duanyu@jlu.edu.cn" ]
收稿日期:2020-10-05,
录用日期:2020-11-1,
纸质出版日期:2021-01
移动端阅览
于超, 陈琛, 吴丹, 等. 喷墨打印钙钛矿光电器件的研究进展[J]. 液晶与显示, 2021,36(1):158-175.
Chao YU, Chen CHEN, Dan WU, et al. Research progress of inkjet printed perovskite optoelectronic devices[J]. Chinese journal of liquid crystals and displays, 2021, 36(1): 158-175.
于超, 陈琛, 吴丹, 等. 喷墨打印钙钛矿光电器件的研究进展[J]. 液晶与显示, 2021,36(1):158-175. DOI: 10.37188/CJLCD.2020-0262.
Chao YU, Chen CHEN, Dan WU, et al. Research progress of inkjet printed perovskite optoelectronic devices[J]. Chinese journal of liquid crystals and displays, 2021, 36(1): 158-175. DOI: 10.37188/CJLCD.2020-0262.
喷墨打印作为一种非接触式、无需掩膜的数字印刷技术,被广泛应用于印刷电路板、光伏组件和显示器件等领域。近年来,金属卤化物钙钛矿作为一种新型的直接带隙离子型半导体材料,受到科研工作者们的广泛关注与研究。利用喷墨打印技术可以对钙钛矿墨滴的分配和沉积过程进行精确调控,为钙钛矿光电器件迈向产业化提供了一种可行的工艺路线。本文从喷墨打印的工作原理出发,分别从墨水制备和打印工艺两个角度概述了喷墨打印钙钛矿光电器件的发展进程,并分析了目前喷墨打印钙钛矿所面临的挑战。同时对基于喷墨打印技术制备钙钛矿光电器件的功能层和电极进行了总结,在此基础上对喷墨打印钙钛矿光电器件未来的发展前景和产业化探索进行了展望。
As a non-contact
mask-free digital printing technology
inkjet printing is widely used in the fields of printed circuit boards
photovoltaic modules and display devices. In recent years
Metal Halide Perovskites
as a new type of direct band gap ionic semiconductor materials
have received extensive attention and research from researchers. The use of inkjet printing technology can accurately control the distribution and deposition process of perovskite ink droplets
providing a feasible process route for the industrialization of perovskite optoelectronic devices. Starting from the working principle of inkjet printing
the development process of inkjet printing perovskite optoelectronic devices from the perspectives of ink engineering and process engineering is summarized
and the current challenges of inkjet printing perovskite are analyzed. At the same time
the functional layers and electrodes of perovskite optoelectronic devices prepared based on inkjet printing technology are summarized
and on this basis
the future development prospects and industrialization exploration of inkjet printing perovskite optoelectronic devices are prospected.
YUE L Y, YAN B, ATTRIDGE M, et al . Light absorption in perovskite solar cell:fundamentals and plasmonic enhancement of infrared band absorption[J]. Solar Energy , 2016, 124:143-152.
韩悦, 李国辉, 梁强兵, 等.全无机钙钛矿CsPb X 3 纳米晶的研究进展[J].发光学报, 2020, 41(5):542-556.
HAN Y, LI G H, LIANG Q B, et al . Advances of all-inorganic perovskite CsPb X 3 nanocrystals[J]. Chinese Journal of Luminescence , 2020, 41(5):542-556. (in Chinese)
MUJAHID M, CHEN C, HU W, et al . Progress of high-throughput and low-cost flexible perovskite solar cells[J]. Solar RRL , 2020, 4(8):1900556.
WANG R, MUJAHID M, DUAN Y, et al . A review of perovskites solar cell stability[J]. Advanced Functional Materials , 2019, 29(47):1808843.
吴江, 曹冠英, 张彦杰, 等. CsPbBr 3 钙钛矿量子点微晶的制备及发光性能[J].发光学报, 2019, 40(9):1073-1078.
WU J, CAO G Y, ZHANG Y J, et al . Preparation and luminescence properties of CsPbBr 3 perovskite quantum dot microcrystals[J]. Chinese Journal of Luminescence , 2019, 40(9):1073-1078. (in Chinese)
WANG H R, ZHAO Y P, WANG Z Y, et al . Hermetic seal for perovskite solar cells:an improved plasma enhanced atomic layer deposition encapsulation[J]. Nano Energy , 2020, 69:104375.
CHEN C, HAN T H, TAN S, et al . Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr 3 emitters prepared via low-temperature in situ dynamic thermal crystallization[J]. Nano Letters , 2020, 20(6):4673-4680.
ZHANG X L, WANG W G, XU B, et al . Thin film perovskite light-emitting diode based on CsPbBr 3 powders and interfacial engineering[J]. Nano Energy , 2017, 37:40-45.
LIN K B, XING J, QUAN L N, et al . Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent[J]. Nature , 2018, 562(7726):245-248.
SON D Y, KIM S G, SEO J Y, et al . Universal approach toward hysteresis-free perovskite solar cell via defect engineering[J]. Journal of the American Chemical Society , 2018, 140(4):1358-1364.
YOO J J, WIEGHOLD S, SPONSELLER M C, et al . An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss[J]. Energy & Environmental Science , 2019, 12(7):2192-2199.
WANG H X, LEI J, GAO F, et al . Magnetic field-assisted perovskite film preparation for enhanced performance of solar cells[J]. ACS Applied Materials & Interfaces , 2017, 9(26):21756-21762.
ZHANG Q, SU R, DU W N, et al . Advances in small perovskite-based lasers[J]. Small Methods , 2017, 1(9):1700163.
CHEN S T, ROH K, LEE J, et al . A photonic crystal laser from solution based organo-lead iodide perovskite thin films[J]. ACS Nano , 2016, 10(4):3959-3967.
LI C L, HAN C, ZHANG Y B, et al . Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr 3 films[J]. Solar Energy Materials and Solar Cells , 2017, 172:341-346.
DU B W, YANG W Q, JIANG Q, et al . Plasmonic-functionalized broadband perovskite photodetector[J]. Advanced Optical Materials , 2018, 6(8):1701271.
KOJIMA A, TESHIMA K, SHIRAI Y, et al . Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society , 2009, 131(17):6050-6051.
NREL. Best research-cell efficiencies[EB/OL].[2020-09-28] . https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf .
GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al . Solar cell efficiency tables (version 56)[J]. Progress in Photovoltaics , 2020, 28(7):629-638.
TYONA M D. A theoritical study on spin coating technique[J]. Advances in Materials Research , 2013, 2(4):195-208.
KADDACHI Z, BELHI M, BEN KAROUI M, et al . Design and development of spin coating system[C]// Proceedings of the 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering. Sousse, Tunisia: IEEE, 2016: 558-562.
HUANG H B, SHI J J, ZHU L F, et al . Two-step ultrasonic spray deposition of CH 3 NH 3 PbI 3 for efficient and large-area perovskite solar cell[J]. Nano Energy , 2016, 27:352-358.
LI C P, YIN J, CHEN R H, et al . Monoammonium porphyrin for blade-coating stable large-area perovskite solar cells with > 18% efficiency[J]. Journal of the American Chemical Society , 2019, 141(15):6345-6351.
LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature , 2013, 501(7467):395-398.
LIU Y F, TSAI M H, PAI Y F, et al . Control of droplet formation by operating waveform for inks with various viscosities in piezoelectric inkjet printing[J]. Applied Physics A , 2013, 111(2):509-516.
KUANG M X, WANG L B, SONG Y L. Controllable printing droplets for high-resolution patterns[J]. Advanced Materials , 2014, 26(40):6950-6958.
SINGH M, HAVERINEN H M, DHAGAT P, et al . Inkjet printing-process and its applications[J]. Advanced Materials , 2010, 22(6):673-685.
HERMERSCHMIDT F, MATHIES F, SCHRÖDER V R F, et al . Finally, inkjet-printed metal halide perovskite LEDs-utilizing seed crystal templating of salty PEDOT:PSS[J]. Materials Horizons , 2020, 7(7):1773-1781.
WEI Z H, CHEN H N, YAN K Y, et al . Inkjet printing and instant chemical transformation of a CH 3 NH 3 PbI 3 /nanocarbon electrode and interface for planar perovskite solar cells[J]. Angewandte Chemie International Edition , 2014, 53(48):13239-13243.
MATHIES F, BRENNER P, HERNANDEZ-SOSA G, et al . Inkjet-printed perovskite distributed feedback lasers[J]. Optics Express , 2018, 26(2):A144-A152.
JANG Y, TAMBUNAN I H, TAK H, et al . Non-contact printing of high aspect ratio Ag electrodes for polycrystalline silicone solar cell with electrohydrodynamic jet printing[J]. Applied Physics Letters , 2013, 102(12):123901.
LIU C T, LEE W H, SHIH T L. Synthesis of ZnO nanoparticles to fabricate a mask-free thin-film transistor by inkjet printing[J]. Journal of Nanotechnology , 2012, 2012:710908.
YANG P H, ZHANG L, KANG D J, et al . High-resolution inkjet printing of quantum dot light-emitting microdiode arrays[J]. Advanced Optical Materials , 2020, 8(1):1901429.
ANDÒ B, BAGLIO S, BULSARA A R, et al . Low-cost inkjet printing technology for the rapid prototyping of transducers[J]. Sensors , 2017, 17(4):748.
MICHELIS F, BODELOT L, BONNASSIEUX Y, et al . Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes[J]. Carbon , 2015, 95:1020-1026.
SHIN K Y, HONG J Y, JANG J. Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing[J]. Chemical Communications , 2011, 47(30):8527-8529.
DERBY B. Inkjet printing of functional and structural materials:fluid property requirements, feature stability, and resolution[J]. Annual Review of Materials Research , 2010, 40:395-414.
BASARAN O A, GAO H J, BHAT P P. Nonstandard inkjets[J]. Annual Review of Fluid Mechanics , 2013, 45:85-113.
LI J, ROSSIGNOL F, MACDONALD J. Inkjet printing for biosensor fabrication:combining chemistry and technology for advanced manufacturing[J]. Lab on a Chip , 2015, 15(12):2538-2558.
VUDDANDA P R, ALOMARI M, DODOO C C, et al . Personalisation of warfarin therapy using thermal ink-jet printing[J]. European Journal of Pharmaceutical Sciences , 2018, 117:80-87.
THUAU D, KALLITSIS K, DOS SANTOS F D, et al . All inkjet-printed piezoelectric electronic devices:energy generators, sensors and actuators[J]. Journal of Materials Chemistry C , 2017, 5(38):9963-9966.
LI X L, YUN T Y, KIM K W, et al . Voltage-tunable dual image of electrostatic force-assisted dispensing printed, tungsten trioxide-based electrochromic devices with a symmetric configuration[J]. ACS Applied Materials & Interfaces , 2020, 12(3):4022-4030.
HADIMIOGLU B, ELROD S A, STEINMETZ D L, et al . Acoustic ink printing[C]// Proceedings of IEEE 1992 Ultrasonics Symposium Proceedings . Tucson, AZ, USA: IEEE, 1992.
KANG S H, KIM S, SOHN D K, et al . Analysis of drop-on-demand piezo inkjet performance[J]. Physics of Fluids , 2020, 32(2):022007.
KRAINER S, SMIT C, HIRN U. The effect of viscosity and surface tension on inkjet printed picoliter dots[J]. RSC Advances , 2019, 9(54):31708-31719.
PARK H Y, KANG B J, LEE D, et al . Control of surface wettability for inkjet printing by combining hydrophobic coating and plasma treatment[J]. Thin Solid Films , 2013, 546:162-166.
LEE S H, SHIN K Y, HWANG J Y, et al . Silver inkjet printing with control of surface energy and substrate temperature[J]. Journal of Micromechanics and Microengineering , 2008, 18(7):075014.
YU X H, XING R B, PENG Z X, et al . To inhibit coffee ring effect in inkjet printing of light-emitting polymer films by decreasing capillary force[J]. Chinese Chemical Letters , 2019, 30(1):135-138.
SOLTMAN D, SUBRAMANIAN V. Inkjet-printed line morphologies and temperature control of the coffee ring effect[J]. Langmuir , 2008, 24(5):2224-2231.
ZHANG Z L, ZHANG X Y, XIN Z Q, et al . Controlled inkjetting of a conductive pattern of silver nanoparticles based on the coffee-ring effect[J]. Advanced Materials , 2013, 25(46):6714-6718.
KALYTCHUK S, WANG Y, POLÁKOVÁ K, et al . Carbon dot fluorescence-lifetime-encoded anti-counterfeiting[J]. ACS Applied Materials & Interfaces , 2018, 10(35):29902-29908.
ANDRES J, HERSCH R D, MOSER J E, et al . A new anti-counterfeiting feature relying on invisible luminescent full color images printed with lanthanide-based inks[J]. Advanced Functional Materials , 2014, 24(32):5029-5036.
WANG H J, YAO W J, TIAN Q Y, et al . Printable monodisperse all-inorganic perovskite quantum dots:synthesis and banknotes protection applications[J]. Advanced Materials Technologies , 2018, 3(11):1800150.
ZHANG F, SHI Z F, LI S, et al . Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting[J]. ACS Applied Materials & Interfaces , 2019, 11(31):28013-28022.
TONG Y L, ZHANG Y W, MA K Z, et al . One-step synthesis of FA-directing FAPbBr 3 perovskite nanocrystals toward high-performance display[J]. ACS Applied Materials & Interfaces , 2018, 10(37):31603-31609.
BYUN J, CHO H, WOLF C, et al . Efficient visible quasi-2D perovskite light-emitting diodes[J]. Advanced Materials , 2016, 28(34):7515-7520.
JIA S Q, LI G Y, LIU P, et al . Highly luminescent and stable green quasi-2D perovskite-embedded polymer sheets by inkjet printing[J]. Advanced Functional Materials , 2020, 30(24):1910817.
BU T L, LIU X P, LI J, et al . Dynamic antisolvent engineering for spin coating of 10×10 cm 2 perovskite solar module approaching 18%[J]. Solar RRL , 2020, 4(2):1900263.
JANG D M, PARK K, KIM D H, et al . Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning[J]. Nano Letters , 2015, 15(8):5191-5199.
WONG Y C, WU W B, WANG T, et al . Color patterning of luminescent perovskites via light-mediated halide exchange with haloalkanes[J]. Advanced Materials , 2019, 31(24):1901247.
HE P, DERBY B. Controlling coffee ring formation during drying of inkjet printed 2D inks[J]. Advanced Materials Interfaces , 2017, 4(22):1700944.
LIU Y, LI F S, QIU L C, et al . Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing[J]. ACS Nano , 2019, 13(2):2042-2049.
DUAN M, FENG Z Y, WU Y W, et al . Inkjet-printed micrometer-thick patterned perovskite quantum dot films for efficient blue-to-green photoconversion[J]. Advanced Materials Technologies , 2019, 4(12):1900779.
GAO A J, YAN J, WANG Z J, et al . Printable CsPbBr 3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing[J]. Nanoscale , 2020, 12(4):2569-2577.
LI D Y, WANG J J, LI M Z, et al . Inkjet printing matrix perovskite quantum dot light-emitting devices[J]. Advanced Materials Technologies , 2020, 5(6):2000099.
HASHMI S G, MARTINEAU D, LI X, et al . Air processed inkjet infiltrated carbon based printed perovskite solar cells with high stability and reproducibility[J]. Advanced Materials Technologies , 2017, 2(1):1600183.
LI S G, JIANG K J, SU M J, et al . Inkjet printing of CH 3 NH 3 PbI 3 on a mesoscopic TiO 2 film for highly efficient perovskite solar cells[J]. Journal of Materials Chemistry A , 2015, 3(17):9092-9097.
BAG M, JIANG Z W, RENNA L A, et al . Rapid combinatorial screening of inkjet-printed alkyl-ammonium cations in perovskite solar cells[J]. Materials Letters , 2016, 164:472-475.
CHEN S, ZHANG L H, YAN L J, et al . Accelerating the screening of perovskite compositions for photovoltaic applications through high-throughput inkjet printing[J]. Advanced Functional Materials , 2019, 29(49):1905487.
ABZIEHER T, MATHIES F, HETTERICH M, et al . Additive-assisted crystallization dynamics in two-step fabrication of perovskite solar cells[J]. Physica Status Solidi (A) , 2017, 214(12):1700509.
HUCKABA A J, LEE Y, XIA R, et al . Inkjet-printed mesoporous TiO 2 and perovskite layers for high efficiency perovskite solar cells[J]. Energy Technology , 2019, 7(2):317-324.
LI P W, LIANG C, BAO B, et al . Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells[J]. Nano Energy , 2018, 46:203-211.
HSIEH T Y, WEI T C, WU K L, et al . Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor[J]. Chemical Communications , 2015, 51(68):13294-13297.
冯月.喷墨打印钙钛矿太阳能电池的应用研究[D].淮南: 安徽理工大学, 2017.
FENG Y. The research of inkjet printing technology in the application of perovskite all solid state solar cells[D]. Huainan: Anhui University of Science & Technology, 2017. (in Chinese)
MATHIES F, EGGERS H, RICHARDS B S, et al . Inkjet-printed triple cation perovskite solar cells[J]. ACS Applied Energy Materials , 2018, 1(5):1834-1839.
ABZIEHER T, MOGHADAMZADEH S, SCHACKMAR F, et al . Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics[J]. Advanced Energy Materials , 2019, 9(12):1802995.
LIU J Y, SHABBIR B, WANG C J, et al . Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots[J]. Advanced Materials , 2019, 31(30):1901644.
MESCHER H, SCHACKMAR F, EGGERS H, et al . Flexible inkjet-printed triple cation perovskite X-ray detectors[J]. ACS Applied Materials & Interfaces , 2020, 12(13):15774-15784.
MIN M, HOSSAIN R F, ADHIKARI N, et al . Inkjet-printed organohalide 2D layered perovskites for high-speed photodetectors on flexible polyimide substrates[J]. ACS Applied Materials & Interfaces , 2020, 12(9):10809-10819.
CHEN Z L, TUREDI B, ALSALLOUM A Y, et al . Single-crystal MAPbI 3 perovskite solar cells exceeding 21% power conversion efficiency[J]. ACS Energy Letters , 2019, 4(6):1258-1259.
GU Z K, WANG K, LI H Z, et al . Direct-writing multifunctional perovskite single crystal arrays by inkjet printing[J]. Small , 2017, 13(8):1603217.
GU Z K, HUANG Z D, HU X T, et al . In situ inkjet printing of the perovskite single-crystal array-embedded polydimethylsiloxane film for wearable light-emitting devices[J]. ACS Applied Materials & Interfaces , 2020, 12(19):22157-22162.
SHI L F, MENG L H, JIANG F, et al . In situ inkjet printing strategy for fabricating perovskite quantum dot patterns[J]. Advanced Functional Materials , 2019, 29(37):1903648.
LIU Y, ZHENG Y, ZHU Y, et al . Unclonable perovskite fluorescent dots with fingerprint pattern for multilevel anti-counterfeiting[J]. ACS Applied Materials & Interfaces , 2020, 12(34):39649-39656.
LU W G, WU X G, HUANG S, et al . Strong polarized photoluminescence from stretched perovskite-nanocrystal-embedded polymer composite films[J]. Advanced Optical Materials , 2017, 5(23):1700594.
LIN C H, KANG C Y, WU T Z, et al . Giant optical anisotropy of perovskite nanowire array films[J]. Advanced Functional Materials , 2020, 30(14):1909275.
MATHIES F, ABZIEHER T, HOCHSTUHL A, et al . Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells[J]. Journal of Materials Chemistry A , 2016, 4(48):19207-19213.
LIANG C, LI P W, GU H, et al . One-step inkjet printed perovskite in air for efficient light harvesting[J]. Solar RRL , 2018, 2(2):1700217.
EGGERS H, SCHACKMAR F, ABZIEHER T, et al . Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains[J]. Advanced Energy Materials , 2020, 10(6):1903184.
LIU Y, LI F S, PERUMAL VEERAMALAI C, et al . Inkjet-printed photodetector arrays based on hybrid perovskite CH 3 NH 3 PbI 3 microwires[J]. ACS Applied Materials & Interfaces , 2017, 9(13):11662-11668.
ALAMRI A M, LEUNG S, VASEEM M, et al . Fully inkjet-printed photodetector using a graphene/perovskite/graphene heterostructure[J]. IEEE Transactions on Electron Devices , 2019, 66(6):2657-2661.
HUCKABA A J, GARCIA-BENITO I, KANDA H, et al . Inkjet-printed TiO 2 /fullerene composite films for planar perovskite solar cells[J]. Helvetica Chimica Acta , 2020, 103(5):e2000044.
GHENO A, PHAM T T T, DI BIN C, et al . Printable WO 3 electron transporting layer for perovskite solar cells:influence on device performance and stability[J]. Solar Energy Materials and Solar Cells , 2017, 161:347-354.
GHENO A, HUANG Y, BOUCLÉ J, et al . Toward highly efficient inkjet-printed perovskite solar cells fully processed under ambient conditions and at low temperature[J]. Solar RRL , 2018, 2(11):1800191.
SCHACKMAR F, EGGERS H, FRERICKS M, et al . Perovskite solar cells with all-inkjet-printed absorber and charge transport layers[J]. Advanced Materials Technologies , 2020, doi:10.1002/admt.202000271.
XIE M L, LU H, ZHANG L P, et al . Fully solution-processed semi-transparent perovskite solar cells with ink-jet printed silver nanowires top electrode[J]. Solar RRL , 2018, 2(2):1700184.
XIE M L, WANG J, KANG J C, et al . Super-flexible perovskite solar cells with high power-per-weight on 17μm thick PET substrate utilizing printed Ag nanowires bottom and top electrodes[J]. Flexible and Printed Electronics , 2019, 4(3):034002.
0
浏览量
475
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621