
浏览全部资源
扫码关注微信
1.宝鸡文理学院,物理与光电技术学院,陕西 宝鸡 721013
2.宝鸡文理学院,宝鸡先进钛合金与功能涂层协同创新研发中心,陕西 宝鸡 721013
[ "刘飞(1981-),男,陕西榆林人,博士,副教授,主要从事计算生物信息学贩卖的研究。E-mail:bwllf@163.com。" ]
收稿日期:2020-09-08,
修回日期:2020-10-23,
移动端阅览
刘飞, 高红艳, 卫则刚, 等. 基于Res-Net深度特征的SAR图像目标识别方法[J/OL]. 液晶与显示, 2020,1-8.
LIU-fei, GAO-hongyani, WEI-zegang, et al. SAR Target recognition using deep features learned by Res-Net[J/OL]. Chinese journal of liquid crystals and displays, 2020, 1-8.
刘飞, 高红艳, 卫则刚, 等. 基于Res-Net深度特征的SAR图像目标识别方法[J/OL]. 液晶与显示, 2020,1-8. DOI: 10.37188/CJLCD.2020-0226.
LIU-fei, GAO-hongyani, WEI-zegang, et al. SAR Target recognition using deep features learned by Res-Net[J/OL]. Chinese journal of liquid crystals and displays, 2020, 1-8. DOI: 10.37188/CJLCD.2020-0226.
采用Res-Net学习合成孔径雷达(synthetic aperture radar,SAR)图像多层次深度特征并基于结构相似性准则选取其中的有效成分。通过联合稀疏表示对选取的多层次深度特征进行表征和分析,判定输入样本的目标类别。方法能够有效结合Res-Net和联合稀疏表示在特征提取和分类决策方面的优势,提升识别方法的整体性能。利用MSTAR数据集进行测试,方法对10类目标的识别率达到99.02%;对于俯仰角差异以及噪声干扰的稳健性更优。
The Res-Net is used to learn the multi-layer deep features from synthetic aperture radar (SAR) images, among which the effective components are selected based on structural similarity. The joint sparse representation is used to represent and analyze the selected deep features and determine the target label. This method could effectively combine the advantages of Res-Net and joint sparse representation in feature extraction and decision so the overall recognition performance can be improved. The MSTAR dataset is used for testing. This method achieves an average recognition rate of 99.02% for 10-class targets. Its performance under depression angle variances and noise interference is also superior over some present methods.
EL-DARYMLI K , GILL E W , McGUIRE P , et al . Automatic target recognition in synthetic aperture radar imagery: a state-of-the-art review [J]. IEEE Access , 2016 , 4 : 6014 – 6058 .
文贡坚 , 朱国强 , 殷红成 , 等 . 基于三维电磁散射参数化模型的SAR目标识别方法 [J]. 雷达学报 , 2017 , 6 ( 2 ): 115 – 135 .
WEN G J , ZHU G Q , YIN H C , et al . SAR ATR based on 3D parametric electromagnetic scattering model [J]. Journal of Radar , 2017 , 6 ( 2 ): 115 – 135 .
ANAGNOSTOPOULOS G C . SVM-based target recognition from synthetic aperture radar images using target region outline descriptors [J]. Nonlinear Analysis , 2009 , 71 ( 2 ): 2934 – 2939 .
王丽 , 魏巍 , 吴林钢 , 等 . SAR图像目标识别新方法 [J]. 液晶与显示 , 2014 , 29 ( 3 ): 429 – 434 .
WANG L , WEI W , WU L G , et al . Novel target recognition based for SAR images [J]. Chinese Journal of Liquid Crystals and Displays , 2014 , 29 ( 3 ): 429 – 434 .
AMOON M , REZAI-RAD G A . Automatic target recognition of synthetic aperture radar (SAR) images based on optimal selection of Zernike moment features [J]. IET Computer Vision , 2014 , 8 ( 2 ): 77 - 85 .
DING B Y , WEN G J , MA C H , et al . Target recognition in synthetic aperture radar images using binary morphological operations [J]. Journal of Applied Remote Sensing , 2016 , 10 ( 4 ): 046006 .
MISHRA A K , MOTAUNG T . Application of linear and nonlinear PCA to SAR ATR [C]. Radioelektronika . 2015 : 1 - 6 .
韩萍 , 王欢 . 结合KPCA 和稀疏表示的SAR目标识别方法研究 [J]. 信号处理 , 2013 , 29 ( 13 ): 1696 – 1701 .
HAN P , WANG H . Research on the synthetic aperture radar target recognition based on KPCA and sparse representation [J]. Journal of Signal Processing , 2013 , 29 ( 13 ): 1696 – 1701 .
CUI Z Y , CAO Z J , YANG J Y , et al . Target recognition in synthetic aperture radar via non-negative matrix factorization [J]. IET Radar , Sonar and Navigation , 2015 , 9 ( 9 ): 1376 – 1385 .
李帅 , 许悦雷 , 马时平 , 等 . 基于小波变换和深层稀疏编码的SAR目标识别 [J]. 电视技术 , 2014 , 38 ( 13 ): 31 – 35 .
LI S , XU Y L , MA S P , et al . SAR target recognition using wavelet transform and deep sparse autoencoders [J]. Video Engineering , 2014 , 38 ( 13 ): 31 – 35 .
DONG G G , KUANG G Y , WANG N , et al . SAR target recognition via joint sparse representation of monogenic signal [J]. IEEE Journal of Selected Topics Applied Earth Observation and Remote Sensing , 2015 , 8 ( 7 ): 3316 – 3328 .
柳小文 , 雷军程 , 伍雁鹏 . 基于二维经验模态分解的SAR目标识别方法 [J]. 激光与光电子学进展 , 2020 , 57 ( 4 ): 041004 .
LIU X W , LEI J C , WU Y P . SAR target recognition based on feature extraction via bidimensional empirical mode decomposition [J]. Laser & Optoelectronics Progress , 2020 , 57 ( 4 ): 041004 .
丁柏圆 , 文贡坚 , 余连生 , 等 . 属性散射中心匹配及其在SAR目标识别中的应用 [J]. 雷达学报 , 2017 , 6 ( 2 ): 157 – 166 .
DING B Y , WEN G J , YU L S , et al . Matching of attributed scattering center and its application to synthetic aperture radar Automatic Target Recognition [J]. Journal of Radar , 2017 , 6 ( 2 ): 157 – 166 .
DING B Y , WEN G J , ZHONG J R , et al . A robust similarity measure for attributed scattering center sets with application to SAR ATR [J]. Neurocomputing , 2017 , 219 : 130 - 143 .
郝岩 , 白艳萍 , 张校非 . 基于KNN的合成孔径雷达目标识别 [J]. 火力与指挥控制 , 2018 , 43 ( 9 ): 113 - 115+120 .
HAO Y , BAI Y P , ZHANG Y F . Synthetic aperture radar target recognition based on KNN [J]. Fire Control & Command Control , 2018 , 43 ( 9 ): 113 - 115+120 .
LIU H C , LI S T . Decision fusion of sparse representation and support vector machine for SAR image target recognition [J]. Neurocomputing 2013 , 113 , 97 - 104 .
THIAGARAIANM J , RAMAMURTHY K , KNEE P P , et al . Sparse representations for automatic target classification in SAR images [C]. 4th Communications , Control and Signal Processing , 2010 : 1 - 4 .
王春哲 , 安军社 , 姜秀杰 , 等 . 基于卷积神经网络的候选区域优化算法 [J]. 中国光学 , 2019 , 12 ( 6 ): 1348 - 1361 .
WANG C Z , AN J S , JIANG X J , et al . Region proposal optimization algorithm based on convolutional neural networks [J]. Chinese Optics , 2019 , 12 ( 6 ): 1348 - 1361
CHEN S Z , WANG H P , XU F , et al . Target classification using the deep convolutional networks for SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing , 2016 , 54 ( 8 ): 4806 – 4817 .
徐英 , 谷雨 , 彭动亮 , 等 . 基于DRGAN和支持向量机的合成孔径雷达图像目标识别 [J]. 光学 精密工程 , 2020 , 28 ( 3 ): 727 - 735 .
XU Y , GU Y , PENG D L , et al . SAR ATR based on disentangled representation learning generative adversarial networks and support vector machine [J]. Optics and Precision Engineering , 2020 , 28 ( 3 ): 727 - 735 .
陈清江 , 张雪 . 混合残差学习与导向滤波算法在图像去雾中的应用 [J]. 光学 精密工程 , 2019 , 27 ( 12 ): 2702 - 2712 .
CHEN Q J , ZHANG X . Application of hybrid residual learning and guided filtering algorithm in image defogging [J]. Optics and Precision Engineering , 2019 , 27 ( 12 ): 2702 - 2712 .
侍国忠 , 陈明 , 张重阳 . 基于改进深度残差网络的河蟹精准溯源系统 [J]. 液晶与显示 , 2019 , 34 ( 12 ): 1202 – 1209 .
SHI G Z , CHEN M , ZHANG C Y . Accurate traceability system of crab based on improved deep residual network [J]. Chinese Journal of Liquid Crystals and Displays , 2019 , 34 ( 12 ): 1202 – 1209 .
杨光义 , 黄奇华 , 金伟正 , 等 . 基于中央凹视觉的梯度结构相似性图像质量评价 [J]. 武汉大学学报(理学版) , 2018 , 64 ( 6 ): 518 - 524 .
YANG G Y , HUANG Q H , JIN W Z , et al . Image quality assessment using gradient structural similarity based on foveal vision [J]. Journal of Wuhan University (Natural Science Edition) , 2018 , 64 ( 6 ): 518 - 524 .
0
浏览量
261
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621