
浏览全部资源
扫码关注微信
1.宁夏大学 物理与电子电气工程学院, 宁夏 银川 750021
2.宁夏沙漠信息智能感知重点实验室, 宁夏 银川 750021
[ "杨琦(1994-), 男, 陕西榆林人, 硕士研究生, 2017年于天津城建大学获得学士学位, 主要从事图像处理、智能视频方面的研究。E-mail:qyang1028@qq.com" ]
[ "车进(1973-), 男, 宁夏银川人, 博士, 教授, 2014年于天津大学获得博士学位, 主要从事图像处理、智能视频方面的研究。E-mail:koalache@126.com" ]
收稿日期:2020-06-23,
修回日期:2020-09-04,
录用日期:2020-9-4,
纸质出版日期:2021-02
移动端阅览
杨琦, 车进, 张良, 等. GAN网络混合编码的行人再识别[J]. 液晶与显示, 2021,36(2):334-342.
Qi YANG, Jin CHE, Liang ZHANG, et al. Person re-identification of GAN network hybrid coding[J]. Chinese journal of liquid crystals and displays, 2021, 36(2): 334-342.
杨琦, 车进, 张良, 等. GAN网络混合编码的行人再识别[J]. 液晶与显示, 2021,36(2):334-342. DOI: 10.37188/CJLCD.2020-0167.
Qi YANG, Jin CHE, Liang ZHANG, et al. Person re-identification of GAN network hybrid coding[J]. Chinese journal of liquid crystals and displays, 2021, 36(2): 334-342. DOI: 10.37188/CJLCD.2020-0167.
由于摄像机视角造成的类内差异明显,研究学者开始利用GAN扩充数据保持类内不变性。针对现有GAN生成图像模糊、背景不真实,本文提出一种利用姿态与外观特征混合编码的行人再识别算法。在训练阶段,将人物图像分解为姿态特征和外观特征,生成网络通过切换外观特征与姿态特征,混合两幅图像中的特征生成高质量图像。判别网络将生成图像的外观特征反馈给生成网络的外观编码器以实现联合优化,采用多损失联合进一步提高生成图片的质量。在测试阶段,使用原数据集对网络模型进行测试,在Market-1501和DukeMTMC-reID数据集上的rank-1/mAP分别达到93.4%/82.2%、84.3%/70.5%。
Due to the obvious intra-class differences caused by camera perspective
many researchers begin to use GAN to expand data to maintain intra-class invariance. Nevertheless
the images generated by existing GAN have some defects such as blurred image and unreal background. To solve the above existing problems
a person re-identification algorithm that uses mixed coding of posture and appearance features is proposed in this paper. In the training phase
the image of the person is decomposed into posture features and appearance features
and the generated network can generate high-quality images by switching the appearance feature and posture feature and then mixing the features in the two images. The discriminant network feeds back the appearance characteristics of the generated image to the appearance coder of the generated network to achieve joint optimization
and uses multi-loss joint to further improve the quality of the generated image. In the testing phase
the network model is tested using the original data set. The rank-1/mAP on the Market-1501 and DukeMTMC-reID data sets can reach 93.4%/82.2% and 84.3%/70.5% respectively.
LIAO S C, HU Y, ZHU X Y, et al . Person re-identification by local maximal occurrence representation and metric learning[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ). Boston, MA: IEEE, 2015: 2197-2206.
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al . Generative adversarial networks[C]// Proceedings of the Advances in Neural Information Processing Systems ( NIPS ). New York: NIPS, 2014: 2672-2680.
RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[C]// Proceedings of the 4 th International Conference on Learning Representations ( ICLR ). San Juan, Puerto Rico, 2016.
ZHENG Z D, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]// Proceedings of 2017 IEEE International Conference on Computer Vision ( ICCV ). Venice: IEEE, 2017: 3374-3782.
Y HUANG , J S XU , Q WU , 等 . Multi-pseudo regularized label for generated data in person re-identification . IEEE Transactions on Image Processing , 2019 . 28 ( 3 ): 1391 - 1403 . DOI: 10.1109/TIP.2018.2874715 http://doi.org/10.1109/TIP.2018.2874715 .
LI X, WU A C, ZHENG W S. Adversarial open-world person re-identification[C]// Proceedings of the 15 th European Conference on Computer Vision-ECCV 2018. Munich, Germany: Springer, 2018.
CHOI Y, CHOI M, KIM M, et al . StarGAN: unified generative adversarial networks for multi-domain image-to-image translation[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City, UT: IEEE, 2018: 8789-8787.
LIU J X, NI B B, YAN Y C, et al . Pose transferrable person Re-identification[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City, UT: IEEE, 2018: 4099-4108.
QIAN X L, FU Y W, XIANG T, et al . Pose-normalized image generation for person re-identification[C]// Proceedings of 15 th European Conference on Computer Vision-ECCV 2018. Munich, Germany: Springer, 2018.
GE Y X, LI Z W, ZHAO H Y, et al . FD-GAN: pose-guided feature distilling GAN for robust person re-identification[C]// Proceedings of the 32 nd International Conference on Neural Information Processing Systems . Montréal, Canada: ACM, 2018.
贠 卫国 , 史 其琦 , 王 民 . 基于深度卷积神经网络的多特征融合的手势识别 . 液晶与显示 , 2019 . 34 ( 4 ): 417 - 422 . http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1383750&Fpath=&index=-1&l=zh http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1383750&Fpath=&index=-1&l=zh .
W G YUN , Q Q SHI , M WANG . Multi-feature fusion gesture recognition based on deep convolutional neural network . Chinese Journal of Liquid Crystals and Displays , 2019 . 34 ( 4 ): 417 - 422 . http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1383750&Fpath=&index=-1&l=zh http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1383750&Fpath=&index=-1&l=zh .
张 良 , 车 进 , 杨 琦 . 多粒度特征融合的行人再识别研究 . 液晶与显示 , 2020 . 35 ( 6 ): 555 - 563 . http://cjlcd.lightpublishing.cn/thesisDetails?columnId=2194564&Fpath=&index=-1&l=zh http://cjlcd.lightpublishing.cn/thesisDetails?columnId=2194564&Fpath=&index=-1&l=zh .
L ZHANG , J CHE , Q YANG . Multi-granularity feature fusion for person re-identification . Chinese Journal of Liquid Crystals and Displays , 2020 . 35 ( 6 ): 555 - 563 . http://cjlcd.lightpublishing.cn/thesisDetails?columnId=2194564&Fpath=&index=-1&l=zh http://cjlcd.lightpublishing.cn/thesisDetails?columnId=2194564&Fpath=&index=-1&l=zh .
林 通 , 陈 新 , 唐 晓 , 等 . 基于双流卷积神经网络和生成式对抗网络的行人重识别算法 . 信息技术与网络安全 , 2020 . 39 ( 6 ): 7 - 12 .
T LIN , X CHEN , X TANG , 等 . Dual stream ConvNet-Gan for person re-identification . Information Technology and Network Security , 2020 . 39 ( 6 ): 7 - 12 .
ZHENG Z D, YANG X D, YU Z D, et al . Joint discriminative and generative learning for person re-identification[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach, CA, USA: IEEE, 2019.
VARIOR R R, HALOI M, WANG G. Gated Siamese convolutional neural network architecture for human re-identification[C]// Proceedings of the 14 th European Conference on Computer Vision . Amsterdam, The Netherlands: Springer, 2016: 791-808.
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al . Generative adversarial nets[C]// Proceedings of the 27 th International Conference on Neural Information Processing Systems . Montreal, Quebec, Canada: ACM, 2014.
HE K M, ZHANG X Y, REN S Q, et al . Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ). Las Vegas, NV: IEEE, 2016: 770-778.
ARAL R A, KESKIN Ş R, KAYA M, et al . Classification of TrashNet dataset based on deep learning models[C]// Proceedings of 2018 IEEE International Conference on Big Data ( Big Data ). Seattle, WA, USA: IEEE, 2018: 2058-2062.
PERERA P, ABAVISANI M, PATEL V M. Unsupervised multi-image-to-image translation using generative adversarial networks[C]// Proceedings of the 24 th International Conference on Pattern Recognition ( ICPR ). Beijing: IEEE, 2018: 140-146.
ISOLA P, ZHU J Y, ZHOU T H, et al . Image-to-image translation with conditional adversarial networks[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ). Honolulu, HI: IEEE, 2017: 5967-5976.
ZHENG L, SHEN L Y, TIAN L, et al . Scalable person re-identification: a benchmark[C]// Proceedings of 2015 IEEE International Conference on Computer Vision ( ICCV ). Santiago: IEEE, 2015: 1116-1124.
RISTANI E, SOLERA F, ZOU R, et al . Performance measures and a data set for multi-target, multi-camera tracking[C]// Proceedings of the 14 th ECCV Workshops 2016. Amsterdam, The Netherlands: Springer, 2016.
L LIN , X L WANG , W YANG , 等 . Discriminatively trained and-or graph models for object shape detection . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2015 . 37 ( 5 ): 959 - 972 . DOI: 10.1109/TPAMI.2014.2359888 http://doi.org/10.1109/TPAMI.2014.2359888 .
ZHENG L, YANG Y, HAUPTMANN A G. Person Re-identification: past, present and future[J]. arXiv : 1610.02984, 2016.
LI D W, CHEN X T, ZHANG Z, et al . Learning deep context-aware features over body and latent parts for person re-identification[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ). Honolulu, HI: IEEE, 2017: 7398-7407.
BAI S, BAI X, TIAN Q. Scalable person re-identification on supervised smoothed manifold[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ). Honolulu, HI: IEEE, 2017: 3356-3365.
SUN Y F, ZHENG L, DENG W J, et al . SVDNet for pedestrian retrieval[C]// Proceedings of 2017 IEEE International Conference on Computer Vision ( ICCV ). Venice: IEEE 2017: 3820-3828.
Z D ZHENG , L ZHENG , Y YANG . Pedestrian alignment network for large-scale person re-identification . IEEE Transactions on Circuits and Systems for Video Technology , 2019 . 29 ( 10 ): 3037 - 3045 . DOI: 10.1109/TCSVT.2018.2873599 http://doi.org/10.1109/TCSVT.2018.2873599 .
CHEN Y B, ZHU X T, GONG S G, et al . Person re-identification by deep learning multi-scale representations[C]// Proceedings of 2017 IEEE International Conference on Computer Vision Workshops ( ICCVW ). Venice: IEEE, 2017: 2590-2600.
CHANG X B, HOSPEDALES T M, XIANG T. Multi-level factorisation net for person re-identification[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City, UT: IEEE, 2018: 2109-2118.
LI W, ZHU X T, GONG S G. Harmonious attention network for person re-identification[C] // Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City, UT: IEEE, 2018: 2285-2294.
SUH Y, WANG J D, TANG S Y, et al . Part-aligned bilinear representations for person re-identification[C]// Proceedings of the 15 th European Conference on Computer Vision-ECCV 2018. Munich, Germany: Springer, 2018.
WANG C, ZHANG Q, HUANG C, et al . Mancs: a multi-task attentional network with curriculum sampling for person re-identification[C]// Proceedings of the 15 th European Conference on Computer Vision-ECCV 2018. Munich, Germany: Springer, 2018: 384-400.
SUN Y F, ZHENG L, YANG Y, et al . Beyond part models: person retrieval with refined part pooling[J]. arXiv : 1711.09349, 2017.
SIAROHIN A, SANGINETO E, LATHUILIōRE S, et al . Deformable GANs for pose-based human image generation[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City, UT: IEEE, 2018: 3408-3416.
0
浏览量
195
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621