
浏览全部资源
扫码关注微信
汕头超声显示器有限公司,广东 汕头,515041
收稿日期:2011-07-07,
修回日期:2011-07-27,
网络出版日期:2011-12-20,
纸质出版日期:2011-12-20
移动端阅览
李永忠, 纪伟丰, 周炎宏. STN-LCD残影显示的原理分析及实验研究[J]. 液晶与显示, 2011,26(6): 733-740
LI Yong-zhong, JI Wei-feng, ZHOU Yan-hong. Research of Image-Retention Phenomenon in STN-LCD[J]. , 2011,26(6): 733-740
影像残留显示现象存在于各类LCD中
大多为离子效应所引起。针对这一问题
分析了不同配向膜对自由离子电荷的吸附情况
以及选用合适的配向膜搭配不同液晶材料、盒内自由离子电荷的浓度情况等对残影显示的影响。实验发现
选用合适的配向膜
增加重配向时间
有利于消除残影现象;在一定配向膜基础上
选用低阈值液晶或选用添加抗静电剂液晶
更容易消除残影现象。不过
在实际运用中
重配向时间的增加会影响液晶陡度;低阈值液晶会使液晶陡度变差同时使响应速度变慢
且容易出现显示不均;抗静电剂液晶也会导致显示不均。因此在实际运用中
必须平衡以上各条件
才能在不影响其他性能前提下
更有效地改善残影现象
提高STN-LCD的显示质量。
Image-retention phenomenon which exists in different kinds of LCDs is mostly caused by ionic charge effect. This thesis focuses on free ionic charge adsorption of alignment layer and free ionic charge density of different liquid crystal materials. We can further eliminate image-retention phenomenon by choosing appropriate materials. The experimental results indicate that with appropriate alignment layer. the more time of realignment the easier to avoid image-retention phenomenon. With certain alignment layer
it's easier to avoid image-retention phenomenon when choosing liquid crystal at low threshold voltage or with anlistatig. However
in practical application
the increasing realignment time will have a bad effect on liquid crystal steep and response time
and it's easier to make LCDs display unevenly. In conclusion
only by balancing all the conditions above it can improve Image-Retention Phenomenon more effectively
and increase displaying quality of STN-LCD.
Chandrasekhar S, Sadashiva B K, Suresh K A. Liqiud crystals of disk-like molecules [J]. Pramana-J. Phys., 1977, 9(5):471-480.[2] Craats A M, Warman J M. The core-size effect on the mobility of charge in discotic liquid crystalline materials [J]. Adv. Mater., 2001, 13(2):130-135.[3] Schouten P G, Warman J M, Haas M P, et al. Charge migration in supramolecular stacks of peripherally substituted porphyrins [J]. Nature, 1991, 353:736-737.[4] Markovitsi D, Marguet S, Bondkowski J, K et al. Triplet excitation transfer in triphenylene columnar phases [J]. J. Phys. Chem. B, 2001, 105(7):1299-1306.[5] Bushby R J, Lozman O R. Discotic liquid crystals 25 years on [J]. Curr. Opin. Colloid In., 2002, 7(5-6):343-354.[6] Li Q, Li L F. Photoconducting Discotic Liquid Crystals, In Thermotropic Liquid Crystals-Recent Advances [M]. New York:Springer, 2007.[7] Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures [J]. Science, 1991, 254(5036):1312-1319.[8] Whitesides G M, Grzybowski B. Self-assembly at all scales [J]. Science, 2002, 295(5564):2418-2421.[9] Antonietti M, Frster S. Vesicles and liposomes:a self-assembly principle beyond lipids [J]. Adv. Mater., 2003, 15(16):1323-1333.[10] He W L, Pan G H, Yang Z, et al. Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative [J]. Adv. Mater., 2009, 21(1):1-4.[11] 何万里, 曹晖, 张晓光, 等. 丙烯酸酯封端的取代氢键液晶的制备及性能研究 [J]. 液晶与显示, 2009, 24(6):783-788.[12] Nayak S, Lyon L A. Soft nanotechnology with soft nanoparticles [J]. Angew. Chem. Int. Ed., 2005, 44(47):7686-7708.[13] Zhang Y, Guan Y, Yang S, et al. Fabrication of hollow capsules based on hydrogen bonding [J]. Adv. Mater., 2003, 15(10):832-835.[14] Binder W H, Bernstorff S, Kluger C, et al. Tunable materials from hydrogen-bonded pseudo block copolymers [J]. Adv. Mater., 2005, 17(23):2824-2828.[15] Osuji C, Chao C Y, Bita I, et al. Temperature-dependent photonic bandgap in a self-assembled hydrogen-bonded liquid-crystalline diblock copolymer [J]. Adv. Funct. Mater., 2002, 12(11-12):753-758.[16] 魏强, 刘凯, 苗志超, 等. 氢键复合物中间相行为的变温红外光谱研究 [J]. 液晶与显示, 2008, 24(2):163-167.[17] Detert H, Lehmann M, Meier H. Star-shaped conjugated systems [J]. Materials, 2010, 3(5):3218-3330.[18] Kato T, Yasuda T, Kamikawa Y, et al. Self-assembly of functional columnar liquid crystals [J]. Chem. Commun., 2009, 21(7):729-739.[19] Lattermann G, Schmidt S, Kleppinger R, et al. The first example of a tridentate azamacrocyclic metallomesogen [J]. Adv. Mater., 1992, 4(1):30-33.[20] Kraft A, Reichert A, Kleppinger R. Supramolecular liquid crystals with columnar mesophases through self-assembly of carboxylic acids around a tribasic core [J]. Chem. Commun., 2000, (12):1015-1016.[21] Yasuda T, Kishimoto K, Kato T. Columnar liquid crystalline -conjugated oligothiophenes [J]. Chem. Commun., 2006, (32):3399-3401.[22] Kleppinger R, Lillya C P, Yang C. Discotic liquid crystals through molecular self-assembly [J]. J. Am. Chem. Soc., 1997, 119(18):4097-4102.[23] Liebmann A, Mertesdorf C, Plesnivy T, et al. Komplexierung von Vbergangsmetall-ionen mit substituierten azamakrocyclen:Induktion columnarer mesophasen durch molekulare erkennung [J]. Angew. Chem., 1991, 103(10):1358-1361.[24] Goldmann D, Janietz D, Festag R, et al. New disc-shaped triarylarnino-l,3,5-triazines with heteroaromatic central cores [J]. Liq. Cryst., 1996, 21(5):619-623.[25] Goldmann D, Dietel R, Janietz D, S et al. Sheet-shaped mesogens based on 1,3,5-triazines:variation of columnar mesophases through intermolecular hydrogen bonding [J]. Liq. Cryst., 1998, 24(3):407-411.[26] Wolff J J, Siegler F, Matschiner R, et al. Optimized two-dimensional NLO chromophores with a threefold symmetry axis [J]. Angew. Chem. Int. Ed., 2000, 39(8):1436-1439.[27] Coco S, Cordovilla C, Domnguez C, et al. Columnar mesophases in hybrid organic-inorganic supramolecular aggregates:liquid crystals of Fe, Cr, Mo, and W at room temperature, built from triazines and metalloacid complexes [J]. Chem. Mater., 2009, 21(14):3282-3289.[28] Beltrn E, Serrano J L, Sierra T, et al. Tris(triazolyl)triazine via click-chemistry:a C3 electron-deficient core with liquid crystalline and luminescent properties [J]. Org. Lett., 2010, 12(7):1404-1407.[29] Price D J, Willis K, Richardson T, et al. Temporal stability of second-order optical non-linearities depending on non-linear optically active groups of polyesters [J]. J. Mater. Chem., 1997, 7(6):883-891.[30] Willis K, Price D J, Adams H, et al. Hydrogen-bonded liquid crystals from alkoxystilbazoles and 3-cyanophenols:structural control of mesomorphism:Molecular structure of the complex between 4-cyanophenol and 4-octyloxystilbazole [J]. J. Mater. Chem., 1995, 5(12):2195-2199.[31] Lee J H, Han M J, Hwang S H, et al. Self-assembled discotic liquid crystals formed by hydrogen bonding of alkoxy -stilbazoles [J]. Tetrahedron Lett., 2005, 46(42):7143-7146.[32] Yang X, Lu Q, Dong S, et al. Studies on structure changes of discotic liquid crystals of transition metal complexes [J]. J. Phys. Chem., 1993, 97(25):6726-6730.
0
浏览量
158
下载量
11
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621