
浏览全部资源
扫码关注微信
1. 河南大学 物理与电子学院,河南 开封 475004,E-mail:xinanzhang@henu.edu.cn
2. 西安交通大学 陕西省信息光子技术重点实验室,陕西 西安,710049
收稿日期:2009-03-28,
修回日期:1900-01-02,
网络出版日期:2009-08-30,
纸质出版日期:2009-08-30
移动端阅览
张新安;张景文;张伟风;侯 洵;. 退火温度对ZnO薄膜晶体管电学性能的影响[J]. 液晶与显示, 2009,24(04): 557-561
ZHANG Xin-an;ZHANG Jing-wen;ZHANG Wei-feng;HOU Xun;. Effect of Annealing Temperature on Electrical Properties of ZnO-TFT[J]. 液晶与显示, 2009,24(04): 557-561
采用光刻剥离法和射频磁控溅射技术在带有热氧化层的硅衬底上制备了以氧化锌(ZnO)为沟道层的薄膜晶体管(ZnO-TFT)。研究了不同温度退火处理对ZnO-TFT电学性能的影响
发现随着ZnO薄膜退火温度的增加
ZnO-TFT的阈值电压减小
电子的场效应迁移率增大。用原子力显微镜(AFM)对ZnO薄膜的微区结构进行观察
发现ZnO薄膜的平均粒径随退火温度的增加而增大
表明ZnO-TFT电学性质和沟道层薄膜晶粒大小密切相关。
ZnO-TFT was fabricated on thermally oxide silicon substrates by RF magnetron sputtering and lift-off technology. The effect of annealing temperature on electrical properties of devices was investigated which revealing that the threshold voltage decreased and the field effect mobility increased with the increase of annealing temperature. The surface morphology of the ZnO films were characterized by atomic force microscopy
which showed that the average grain size increased with the increase of annealed temperature. The results indicate that there are close correlation between electrical properties of ZnO-TFT and the grain size of the channel layer.
. Klauk H, Gundlach D J, Jackson T N. Fast organic thin-film transistor circuits [J]. IEEE Electron Device Lett., 1999, 20(6):289-291.
. Servati P, Prakash S, Nathan A, et al. Amorphous silicon driver circuits for organic light-emitting diode displays [J]. J. Vacuum Science & Technology A—Vacuum Surfaces and Films, 2002,20(4):1374-1378.
. Bea H S, Seongil Im. ZnO-based thin film transistors of optimal device performance [J]. J. Vac. Sci. Technol., 2004, B22(3):1191-1195.
. Kim I D, Lim M H, Kang K, et al. Room temperature fabricated ZnO thin film transistor using high-K Bi1.5Zn1.0Nb1.5O7 gate insulator prepared by sputtering [J]. Appl. Phys. Lett., 2006, 89(2):022905(1-3).
. Ozgur U, Alivov YI, Liu C, et al. A comprehensive review of ZnO materials and devices[J]. J. Appl. Phys., 2005, 98(4):041301(1-103).
. Look D C. Recent advances in ZnO materials and devices [J]. Materials Science and Engineering B, 2001, 80(1-3): 383-387.
. Masuda S, Kitamura K, Okumura Y, et al. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties [J]. J. Appl. Phys., 2003, 93(3):1624-1630.
. Bae H S, Yoon M H, Kim J H, et al. Photodetecting properties of ZnO-based thin-film transistors[J]. Appl. Phys. Lett., 2003, 83(25):5313-5315.
. Kwon Y,Li Y,Heo Y W,et al. Enhancement-mode thin film field effect transistor using phosphorus-doped (Zn,Mg)O channel [J]. Appl. Phys. Lett., 2004, 84(14):2685-2687.
. Hsieh H H, Wu C C. Scaling behavior of ZnO transparent thin film transistors [J]. Appl. Phys. Lett., 2006, 89(4):041109(1-3).
. Angelis C T, Dimitriadis C A, Miyasaka M, et al. Effect of excimer laser annealing on the structural and electrical properties of polycrystalline silicon thin-film transistors [J]. J. Appl. Phys., 1999, 86(8) :4600-4606.
0
浏览量
159
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621