Dual cross-attention Transformer network for few-shot image semantic segmentation
Image Processing|更新时间:2024-11-28
|
Dual cross-attention Transformer network for few-shot image semantic segmentation
“In the field of image semantic segmentation, researchers have proposed a small sample segmentation method based on dual cross attention network, which effectively improves the performance of new category segmentation.”
Chinese Journal of Liquid Crystals and DisplaysVol. 39, Issue 11, Pages: 1494-1505(2024)
作者机构:
1.河北工业大学 电子信息工程学院, 天津 300401
2.河北工业大学 人工智能与数据科学学院, 天津 300401
作者简介:
基金信息:
Youth Project of National Natural Science Foundation of China (No.62102129);General Project of National Natural Science Foundation of China(62276088);Natural Science Foundation of Hebei Province (No.F2021202030, No.F2019202381, No.F2019202464)
LIU Yu, GUO Yingchun, ZHU Ye, et al. Dual cross-attention Transformer network for few-shot image semantic segmentation[J]. Chinese journal of liquid crystals and displays, 2024, 39(11): 1494-1505.
DOI:
LIU Yu, GUO Yingchun, ZHU Ye, et al. Dual cross-attention Transformer network for few-shot image semantic segmentation[J]. Chinese journal of liquid crystals and displays, 2024, 39(11): 1494-1505. DOI: 10.37188/CJLCD.2024-0151.
Dual cross-attention Transformer network for few-shot image semantic segmentation