Remote sensing scene classification model based on improved ShuffleNetV2 network
Image Processing|更新时间:2024-11-28
|
Remote sensing scene classification model based on improved ShuffleNetV2 network
“The latest research proposes a remote sensing image classification method based on improved ShuffleNetV2 network and knowledge distillation, which effectively improves classification accuracy and reduces parameter count.”
Chinese Journal of Liquid Crystals and DisplaysVol. 39, Issue 11, Pages: 1557-1568(2024)
作者机构:
中国科学院 长春光学精密机械与物理研究所 数字中心, 吉林 长春 130033
作者简介:
基金信息:
Special Fund for Strategic Leading Science and Technology of the Chinese Academy of Sciences(XDB0500103);National Basic Discipline Public Science Data Center Project(NBSDC-DB-02)
XU Huiwen, ZHAO Weichao, LI Ze. Remote sensing scene classification model based on improved ShuffleNetV2 network[J]. Chinese journal of liquid crystals and displays, 2024, 39(11): 1557-1568.
DOI:
XU Huiwen, ZHAO Weichao, LI Ze. Remote sensing scene classification model based on improved ShuffleNetV2 network[J]. Chinese journal of liquid crystals and displays, 2024, 39(11): 1557-1568. DOI: 10.37188/CJLCD.2024-0148.
Remote sensing scene classification model based on improved ShuffleNetV2 network