LIU Hong-jun, QIU Cheng-feng, LIU Zhao-jun. Laser scanning device and response speed modulation based on VA liquid crystal[J]. Chinese journal of liquid crystals and displays, 2023, 38(9): 1178-1184.
DOI:
LIU Hong-jun, QIU Cheng-feng, LIU Zhao-jun. Laser scanning device and response speed modulation based on VA liquid crystal[J]. Chinese journal of liquid crystals and displays, 2023, 38(9): 1178-1184. DOI: 10.37188/CJLCD.2023-0174.
Laser scanning device and response speed modulation based on VA liquid crystal
In this work, the vertically aligned (VA) liquid crystal devices are prepared on a substrate with serrated ITO electrodes, the laser is coupled into the liquid crystal layer, and the voltage of the ITO electrodes is modulated. The output laser achieves deflection and the deflection angle increases with the increase of voltage until saturation. Under two serrated electrodes with a top angle of 20°, the laser spot deflects by about 4°. At the same time, since the voltage used for driving liquid crystals is an AC signal, by adjusting the minimum driving voltage, which is the bias voltage, the liquid crystal molecules start to rotate from a certain starting angle and are also driven within their fast rotation range, thereby improving the response speed of the liquid crystal molecules.Under the guidance of this strategy, the state and driving speed of liquid crystal molecules are determined by characterizing their polarization state during their rotation. Under the premise of balancing the refractive index and driving speed, the overall response speed of liquid crystal layer molecules under different bias voltages is compared. Under a certain bias voltage, the response time driven by the liquid crystal layer decreases from 55 ms to 2.5 ms, while the relaxation time after power outage decreases from 18 ms to 8.5 ms. This provides a new solution for laser deflection devices using this liquid crystal layer scheme to achieve faster scanning frequency and scanning angle in the future.
关键词
Keywords
references
ILAS C . Electronic sensing technologies for autonomous ground vehicles: a review [C]. 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE) . Bucharest : IEEE , 2013 : 1 - 6 . doi: 10.1109/atee.2013.6563528 http://dx.doi.org/10.1109/atee.2013.6563528
HALIR R , BOCK P J , CHEBEN P , et al . Waveguide sub-wavelength structures: a review of principles and applications [J]. Laser & Photonics Reviews , 2015 , 9 ( 1 ): 25 - 49 . doi: 10.1002/lpor.201400083 http://dx.doi.org/10.1002/lpor.201400083
LOHANI B , GHOSH S . Airborne LiDAR technology: a review of data collection and processing systems [J]. Proceedings of the National Academy of Sciences , India Section A: Physical Sciences, 2017 , 87 ( 4 ): 567 - 579 . doi: 10.1007/s40010-017-0435-9 http://dx.doi.org/10.1007/s40010-017-0435-9
JABOYEDOFF M , OPPIKOFER T , ABELLÁN A , et al . Use of LIDAR in landslide investigations: a review [J]. Natural Hazards , 2012 , 61 ( 1 ): 5 - 28 . doi: 10.1007/s11069-010-9634-2 http://dx.doi.org/10.1007/s11069-010-9634-2
ENGSTRÖM D , O’CALLAGHAN M J , WALKER C , et al . Fast beam steering with a ferroelectric-liquid-crystal optical phased array [J]. Applied Optics , 2009 , 48 ( 9 ): 1721 - 1726 . doi: 10.1364/ao.48.001721 http://dx.doi.org/10.1364/ao.48.001721
YUAN R , LIU Y , TAN Q G , et al . An all-liquid-crystal strategy for fast orbital angular momentum encoding and optical vortex steering [J]. IEEE Journal of Selected Topics in Quantum Electronics , 2022 , 28 ( 5 ): 6000106 . doi: 10.1109/jstqe.2021.3136360 http://dx.doi.org/10.1109/jstqe.2021.3136360
WEI T , CHEN P , TANG M , et al . Liquid-crystal-mediated active waveguides toward programmable integrated optics [J]. Advanced Optical Materials , 2020 , 8 ( 10 ): 1902033 . doi: 10.1002/adom.201902033 http://dx.doi.org/10.1002/adom.201902033
YANG H N , ROBERTSON B , WILKINSON P , et al . Small phase pattern 2D beam steering and a single LCOS design of 40 1×12 stacked wavelength selective switches [J]. Optics Express , 2016 , 24 ( 11 ): 12240 - 12253 . doi: 10.1364/oe.24.012240 http://dx.doi.org/10.1364/oe.24.012240
JOHNSON K M , MCKNIGHT D J , UNDERWOOD I . Smart spatial light modulators using liquid crystals on silicon [J]. IEEE Journal of Quantum Electronics , 1993 , 29 ( 2 ): 699 - 714 . doi: 10.1109/3.199323 http://dx.doi.org/10.1109/3.199323
DAVIS S R , ROMMEL S D , JOHNSON S , et al . Liquid crystal clad waveguide laser scanner and waveguide amplifier for LADAR and sensing applications [C]// Proceeding of SPIE 9365, Integrated Optics: Devices, Materials, and Technologies XIX . San Francisco : SPIE , 2015 : 93650N . doi: 10.1117/12.2077061 http://dx.doi.org/10.1117/12.2077061
DAVIS S R , FARCA G , ROMMEL S D , et al . Liquid crystal waveguides: new devices enabled by>1 000 waves of optical phase control [C]// Proceeding of SPIE 7618 , . San Francisco : SPIE , 2010 : 76180E . doi: 10.1117/12.851788 http://dx.doi.org/10.1117/12.851788
YANG D K , WU S T . Fundamentals of Liquid Crystal Devices [M]. Hoboken : Wiley , 2006 . doi: 10.1002/0470032030 http://dx.doi.org/10.1002/0470032030
KELLER S D , UYENO G P , LYNCH T , et al . Emerging liquid crystal waveguide technology for low SWaP active short-wave infrared imagers [C]// Proceeding of SPIE 9384 , . San Francisco : SPIE , 2015 : 93840M . doi: 10.1117/12.2076835 http://dx.doi.org/10.1117/12.2076835