浏览全部资源
扫码关注微信
上海工程技术大学 电子电气工程学院, 上海 201620
Received:07 March 2023,
Revised:16 March 2023,
Published:05 December 2023
移动端阅览
LI Ren-si, SHI Yun-yu, LIU Xiang, et al. Object detection in foggy image based on Double-Head[J]. Chinese journal of liquid crystals and displays, 2023, 38(12): 1717-1727.
LI Ren-si, SHI Yun-yu, LIU Xiang, et al. Object detection in foggy image based on Double-Head[J]. Chinese journal of liquid crystals and displays, 2023, 38(12): 1717-1727. DOI: 10.37188/CJLCD.2023-0089.
雾天环境下的图像对比度低,图像中的目标较为模糊并且其特征提取存在一定难度。现有的目标检测方法对于雾天图像的检测准确率偏低。针对上述问题,本文在Double-Head框架上基于图像的特征提取部分和预测头部进行改进。首先,在提取的深层特征图上添加通道和空间双维度的复合注意力机制,提高网络关注显著目标的能力;其次,将原始图像经过改进的暗通道先验以及处理后得到的先验矩阵和特征图进一步融合,获取更全面的雾天图像特征信息;最后,在预测头部引入可分离卷积,使用解耦合预测头对目标进行最终的分类和回归。该方法在RTTS数据集上的mAP为49.37%,在合成数据集S-KITTI和S-COCOval数据集上的AP值分别为66.7%和57.7%。与其他主流算法相比,本文算法具有更高的目标检测精度。
Image contrast in the foggy environment is low, and the object is fuzzy so that it is difficult to extract features in images. The existing object detection methods has a low accuracy for detecting objects in foggy images, and the objects is fuzzy and is difficult to extract features. To solve these problems, the feature extraction and prediction head are improved on the Double-Head framework. Firstly, multi-scale salient and effective features of objects in the image are carried out by adding channel attention to the feature maps extracted from the backbone network. Secondly, the prior matrix and fea-ture maps from the original image processing by dark channel prior method with image processing are fused to get more comprehensive feature information in foggy images. Finally, the separable convolution is introduced into the prediction head and the effective decoupled head is used to complete the classification and regression tasks. The proposed method has the mAP of 49.37% on the RTTS dataset, and the AP of 66.7% and 57.7% on the S-KITTI and S-COCOval dataset. Compared with other mainstream algorithms, this algorithm has higher object detection accuracy.
REDMON J , DIVVALA S , GIRSHICK R , et al . You only look once: Unified, real-time object detection [C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas : IEEE , 2016 : 779 - 788 . doi: 10.1109/cvpr.2016.91 http://dx.doi.org/10.1109/cvpr.2016.91
LIU W , ANGUELOV D , ERHAN D , et al . SSD: single shot MultiBox detector [C]// Proceedings of the 14th European Conference on Computer Vision . Amsterdam : Springer , 2016 : 21 - 37 . doi: 10.1007/978-3-319-46448-0_2 http://dx.doi.org/10.1007/978-3-319-46448-0_2
REN S Q , HE K M , GIRSHICK R B , et al . Faster R-CNN: towards real-time object detection with region proposal networks [C]// Proceedings of the 28th International Conference on Neural Information Processing Systems . Montreal : Curran Associates , 2015 : 91 - 99 .
GIRSHICK R B , DONAHUE J , DARRELL T , et al . Region-based convolutional networks for accurate object detection and segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2015 , 38 ( 1 ): 142 - 158 . doi: 10.1109/tpami.2015.2437384 http://dx.doi.org/10.1109/tpami.2015.2437384
GIRSHICK R . Fast R-CNN [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision . Santiago : IEEE , 2015 : 1440 - 1448 . doi: 10.1109/iccv.2015.169 http://dx.doi.org/10.1109/iccv.2015.169
LIN T Y , DOLLÁR P , GIRSHICK R , et al . Feature pyramid networks for object detection [C]// Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition . Honolulu : IEEE , 2017 : 936 - 944 . doi: 10.1109/cvpr.2017.106 http://dx.doi.org/10.1109/cvpr.2017.106
LIU S , QI L , QIN H F , et al . Path aggregation network for instance segmentation [C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City : IEEE , 2018 : 8759 - 8768 . doi: 10.1109/cvpr.2018.00913 http://dx.doi.org/10.1109/cvpr.2018.00913
PANG J M , CHEN K , SHI J P , et al . Libra R-CNN: towards balanced learning for object detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach : IEEE , 2019 : 821 - 830 . doi: 10.1109/cvpr.2019.00091 http://dx.doi.org/10.1109/cvpr.2019.00091
李静 , 喻佳成 , 张灵灵 . 基于改进SSD的航拍飞机目标检测方法 [J]. 液晶与显示 , 2023 , 38 ( 1 ): 128 - 137 . doi: 10.37188/cjlcd.2022-0183 http://dx.doi.org/10.37188/cjlcd.2022-0183
LI J , YU J C , ZHANG L L . Aircraft target detection method based on improved SSD [J]. Chinese Journal of Liquid Crystals and Displays , 2023 , 38 ( 1 ): 128 - 137 . (in Chinese) . doi: 10.37188/cjlcd.2022-0183 http://dx.doi.org/10.37188/cjlcd.2022-0183
LI B Y , PENG X L , ZHANG Z Y , et al . AOD-Net: all-in-one dehazing network [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision . Venice : IEEE , 2017 : 4780 - 4788 . doi: 10.1109/iccv.2017.511 http://dx.doi.org/10.1109/iccv.2017.511
汪昱东 , 郭继昌 , 王天保 . 一种改进的雾天图像行人和车辆检测算法 [J]. 西安电子科技大学学报 , 2020 , 47 ( 4 ): 70 - 77 .
WANG Y D , GUO J C , WANG T B . Algorithm for foggy-image pedestrian and vehicle detection [J]. Journal of Xidian University , 2020 , 47 ( 4 ): 70 - 77 . (in Chinese)
解宇虹 , 谢源 , 陈亮 , 等 . 真实有雾场景下的目标检测 [J]. 计算机辅助设计与图形学学报 , 2021 , 33 ( 5 ): 733 - 745 . doi: 10.3724/sp.j.1089.2021.18554 http://dx.doi.org/10.3724/sp.j.1089.2021.18554
XIE Y H , XIE Y , CHEN L , et al . Object detection in real-world hazy scene [J]. Journal of Computer-Aided Design & Computer Graphics , 2021 , 33 ( 5 ): 733 - 745 . (in Chinese) . doi: 10.3724/sp.j.1089.2021.18554 http://dx.doi.org/10.3724/sp.j.1089.2021.18554
HE K M , SUN J , TANG X O . Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 , 33 ( 12 ): 2341 - 2353 . doi: 10.1109/tpami.2010.168 http://dx.doi.org/10.1109/tpami.2010.168
WU Y , CHEN Y P , YUAN L , et al . 2020 . Rethinking classification and localization for object detection [C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle : IEEE , 2020: 10183 - 10192 . doi: 10.1109/cvpr42600.2020.01020 http://dx.doi.org/10.1109/cvpr42600.2020.01020
NAYAR S K , NARASIMHAN S G . Vision in bad weather [C]// Proceedings of the 7th IEEE International Conference on Computer Vision . Kerkyra : IEEE , 1999 : 820 - 827 . doi: 10.1109/iccv.1999.790306 http://dx.doi.org/10.1109/iccv.1999.790306
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas : IEEE , 2016 : 770 - 778 . doi: 10.1109/cvpr.2016.90 http://dx.doi.org/10.1109/cvpr.2016.90
CHOLLET F . Xception: deep learning with depthwise separable convolutions [C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition . Honolulu : IEEE , 2017 : 1800 - 1807 . doi: 10.1109/cvpr.2017.195 http://dx.doi.org/10.1109/cvpr.2017.195
LI B Y , REN W Q , FU D P , et al . Benchmarking single-image dehazing and beyond [J]. IEEE Transactions on Image Processing , 2019 , 28 ( 1 ): 492 - 505 . doi: 10.1109/tip.2018.2867951 http://dx.doi.org/10.1109/tip.2018.2867951
GEIGER A , LENZ P , URTASUN R . Are we ready for autonomous driving? The KITTI vision benchmark suite [C]// Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition . Providence : IEEE , 2012 : 3354 - 3361 . doi: 10.1109/cvpr.2012.6248074 http://dx.doi.org/10.1109/cvpr.2012.6248074
LIN T Y , MAIRE M , BELONGIE S , et al . Microsoft COCO: Common objects in context [C]// Proceedings of the 2014 13th European Conference on Computer Vision . Zurich : Springer , 2014 : 740 - 755 . doi: 10.1007/978-3-319-10602-1_48 http://dx.doi.org/10.1007/978-3-319-10602-1_48
SHETTY S . Application of convolutional neural network for image classification on Pascal VOC challenge 2012 dataset [J/OL]. arXiv , 2016 : 1607 . 03785 .
REDMON J , FARHADI A . YOLOv3: an incremental improvement [J/OL]. arXiv , 2018 : 1804 . 02767 . doi: 10.1109/cvpr.2017.690 http://dx.doi.org/10.1109/cvpr.2017.690
ZHANG S F , CHI C , YAO Y Q , et al . Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection [C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle : IEEE , 2020 : 9756 - 9765 . doi: 10.1109/cvpr42600.2020.00978 http://dx.doi.org/10.1109/cvpr42600.2020.00978
ZHANG H K , CHANG H , MA B P , et al . Dynamic R-CNN: towards high quality object detection via dynamic training [C]// Proceedings of the 16th European Conference on Computer Vision . Glasgow : Springer , 2020 : 260 - 275 . doi: 10.1007/978-3-030-58555-6_16 http://dx.doi.org/10.1007/978-3-030-58555-6_16
CAI Z W , VASCONCELOS N . Cascade R-CNN: delving into high quality object detection [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City : IEEE , 2018 : 6154 - 6162 . doi: 10.1109/cvpr.2018.00644 http://dx.doi.org/10.1109/cvpr.2018.00644
ZHU C C , HE Y H , SAVVIDES M . Feature selective anchor-free module for single-shot object detection [C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach : IEEE , 2019 : 840 - 849 . doi: 10.1109/cvpr.2019.00093 http://dx.doi.org/10.1109/cvpr.2019.00093
HU J , SHEN L , ALBANIE S , et al . Squeeze-and-excitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2020 , 42 ( 8 ): 2011 - 2023 . doi: 10.1109/tpami.2019.2913372 http://dx.doi.org/10.1109/tpami.2019.2913372
WOO S , PARK J , LEE J , et al . CBAM: Convolutional block attention module [C]. 2018 European Conference on Computer Vision, Springer Cham , 2018 : 3 - 19 . doi: 10.1007/978-3-030-01234-2_1 http://dx.doi.org/10.1007/978-3-030-01234-2_1
HOU Q B , ZHOU D Q , FENG J S . Coordinate attention for efficient mobile network design [C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville : IEEE , 2021 : 13708 - 13717 . doi: 10.1109/cvpr46437.2021.01350 http://dx.doi.org/10.1109/cvpr46437.2021.01350
0
Views
154
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution