浏览全部资源
扫码关注微信
山东理工大学 计算机科学与技术学院, 山东 淄博 255000
Received:31 January 2023,
Revised:05 March 2023,
Published:05 December 2023
移动端阅览
MENG Xiao-liang, ZHAO Ji-kang, WANG Xiao-yu, et al. Detection and segmentation method of surgical instruments based on improved YOLOv5s[J]. Chinese journal of liquid crystals and displays, 2023, 38(12): 1698-1706.
MENG Xiao-liang, ZHAO Ji-kang, WANG Xiao-yu, et al. Detection and segmentation method of surgical instruments based on improved YOLOv5s[J]. Chinese journal of liquid crystals and displays, 2023, 38(12): 1698-1706. DOI: 10.37188/CJLCD.2023-0025.
在内窥镜手术过程中,外科医师需实时掌握手术器械的位置信息。现有目标检测算法受反光和阴影等因素影响,其准确度和漏检率仍有优化的空间。本文提出一种基于改进YOLOv5s的手术器械检测与分割方法。首先,通过Gamma校正算法校正图像的亮度和对比度,以解决手术器械的反光和阴影遮挡等问题;其次,设计CBAM和动态卷积模块,增加重要特征信息的权重,以进一步提高目标检测的准确度并减少模型的漏检率;同时,优化空间金字塔池化模块以扩大感受野,从而更好地识别多尺度目标;最后,设计FPN语义分割头,以实现语义分割功能。在内窥镜手术数据集上的实验结果表明,本文目标检测的mAP@0.5为98.2%,语义分割的mIoU为94.0%。所提方法可辅助外科医师快速掌握手术器械的位置和类型,提高手术效率。
In the process of endoscopic surgery, surgeons need to know the position information of surgical instruments in real time. The existing target detection algorithms are affected by factors such as reflection and shadow, and there is still optimization space for the accuracy and missed detection rate. This paper proposes a detection and segmentation method of surgical instruments based on improved YOLOv5s. Firstly, the brightness and contrast of images are corrected by Gamma correction algorithm to solve the problems of reflection and shadow occlusion of surgical instruments. Secondly, convolutional block attention module(CBAM) and dynamic convolution module are designed to increase the weight of important feature information, which further improves the accuracy of target detection and reduces the missed detection rate of the model. At the same time, the spatial pyramid pooling module is optimized to expand the receptive field, so as to better identify multi-scale targets. Finally, the feature pyramid networks (FPN) semantic segmentation head is designed to realize the semantic segmentation. Experimental results on endoscopic surgery dataset show that the mAP@0.5 of target detection in this paper is 98.2%, and the mIoU of semantic segmentation is 94.0%. The proposed method can assist surgeons to quickly grasp the position and type of surgical instruments, and improve the efficiency of surgery.
RIVENSON Y , WU Y C , OZCAN A . Deep learning in holography and coherent imaging [J]. Light: Science & Applications , 2019 , 8 : 85 . doi: 10.1038/s41377-019-0196-0 http://dx.doi.org/10.1038/s41377-019-0196-0
ZUO C , QIAN J M , FENG S J , et al . Deep learning in optical metrology: a review [J]. Light: Science & Applications , 2022 , 11 ( 1 ): 39 . doi: 10.1038/s41377-022-00714-x http://dx.doi.org/10.1038/s41377-022-00714-x
FU Z M , JIN Z Y , ZHANG C G , et al . The future of endoscopic navigation: a review of advanced endoscopic vision technology [J]. IEEE Access , 2021 , 9 : 41144 - 41167 . doi: 10.1109/access.2021.3065104 http://dx.doi.org/10.1109/access.2021.3065104
JIN A , YEUNG S , JOPLING J , et al . Tool detection and operative skill assessment in surgical videos using region-based convolutional neural networks [C]// Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision . Lake Tahoe, USA : IEEE , 2018 : 691 - 699 . doi: 10.1109/wacv.2018.00081 http://dx.doi.org/10.1109/wacv.2018.00081
MAHMOOD T , CHO S W , PARK K R . DSRD-Net: dual-stream residual dense network for semantic segmentation of instruments in robot-assisted surgery [J]. Expert Systems with Applications , 2022 , 202 : 117420 . doi: 10.1016/j.eswa.2022.117420 http://dx.doi.org/10.1016/j.eswa.2022.117420
LIU Y Y , ZHAO Z J , CHANG F L , et al . An anchor-free convolutional neural network for real-time surgical tool detection in robot-assisted surgery [J]. IEEE Access , 2020 , 8 : 78193 - 78201 . doi: 10.1109/access.2020.2989807 http://dx.doi.org/10.1109/access.2020.2989807
郑腾辉 , 陶青川 . 基于全卷积神经网络的手术器械图像语义分割算法 [J]. 现代计算机 , 2019 ( 9 ): 80 - 84 .
ZHENG T H , TAO Q C . Semantic segmentation algorithm for images of surgical instruments based on fully convolutional networks [J]. Modern Computer , 2019 ( 9 ): 80 - 84 . (in Chinese)
NI Z L , BIAN G B , ZHOU X H , et al . RAUNet: residual attention U-Net for semantic segmentation of cataract surgical instruments [C]// Proceedings of the 26th International Conference on Neural Information Processing . Sydney, Australia : Springer , 2019 : 139 - 149 . doi: 10.1007/978-3-030-36711-4_13 http://dx.doi.org/10.1007/978-3-030-36711-4_13
NI Z L , ZHOU X H , WANG G A , et al . SurgiNet: pyramid attention aggregation and class-wise self-distillation for surgical instrument segmentation [J]. Medical Image Analysis , 2022 , 76 : 102310 . doi: 10.1016/j.media.2021.102310 http://dx.doi.org/10.1016/j.media.2021.102310
徐昌佳 , 易见兵 , 曹锋 , 等 . 采用DoubleUNet网络的结直肠息肉分割算法 [J]. 光学 精密工程 , 2022 , 30 ( 8 ): 970 - 983 . doi: 10.37188/ope.20223008.0970 http://dx.doi.org/10.37188/ope.20223008.0970
XU C J , YI J B , CAO F , et al . Colorectal polyp segmentation algorithm using DoubleUNet network [J]. Optics and Precision Engineering , 2022 , 30 ( 8 ): 970 - 983 . (in Chinese) . doi: 10.37188/ope.20223008.0970 http://dx.doi.org/10.37188/ope.20223008.0970
JHA D , RIEGLER M A , JOHANSEN D , et al . DoubleU-Net: a deep convolutional neural network for medical image segmentation [C]// Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems . Rochester, USA : IEEE , 2020 : 558 - 564 . doi: 10.1109/cbms49503.2020.00111 http://dx.doi.org/10.1109/cbms49503.2020.00111
YANG M K , YU K , ZHANG C , et al . DenseASPP for semantic segmentation in street scenes [C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City, USA : IEEE , 2018 : 3684 - 3692 . doi: 10.1109/cvpr.2018.00388 http://dx.doi.org/10.1109/cvpr.2018.00388
PAN J J , LIU W M , GE P , et al . Real-time segmentation and tracking of excised corneal contour by deep neural networks for DALK surgical navigation [J]. Computer Methods and Programs in Biomedicine , 2020 , 197 : 105679 . doi: 10.1016/j.cmpb.2020.105679 http://dx.doi.org/10.1016/j.cmpb.2020.105679
樊新川 , 陈春梅 . 基于YOLO框架的轻量化高精度目标检测算法 [J]. 液晶与显示 , 2023 , 38 ( 7 ): 945 - 954 . doi: 10.37188/CJLCD.2022-0328 http://dx.doi.org/10.37188/CJLCD.2022-0328
FAN X C , CHEN C M . Lightweight and high-precision object detection algorithm based on YOLO framework [J]. Chinese Journal of Liquid Crystals and Displays , 2023 , 38 ( 7 ): 945 - 954 . (in Chinese) . doi: 10.37188/CJLCD.2022-0328 http://dx.doi.org/10.37188/CJLCD.2022-0328
WOO S , PARK J , LEE J Y , et al . CBAM: convolutional block attention module [C]// Proceedings of the 15th European Conference on Computer Vision . Munich, Germany : Springer , 2018 : 3 - 19 . doi: 10.1007/978-3-030-01234-2_1 http://dx.doi.org/10.1007/978-3-030-01234-2_1
OZAWA T , HAYASHI Y , ODA H , et al . Synthetic laparoscopic video generation for machine learning-based surgical instrument segmentation from real laparoscopic video and virtual surgical instruments [J]. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization , 2021 , 9 ( 3 ): 225 - 232 . doi: 10.1080/21681163.2020.1835560 http://dx.doi.org/10.1080/21681163.2020.1835560
ELFWING S , UCHIBE E , DOYA K . Sigmoid-weighted linear units for neural network function approximation in reinforcement learning [J]. Neural Networks , 2018 , 107 : 3 - 11 . doi: 10.1016/j.neunet.2017.12.012 http://dx.doi.org/10.1016/j.neunet.2017.12.012
ELHASSAN M A , YANG C H , HUANG C X , et al . SPFNet: subspace pyramid fusion network for semantic segmentation [J/OL]. arXiv , 2022 : 2204 . 01278 . doi: 10.1155/2021/5563875 http://dx.doi.org/10.1155/2021/5563875
LI C , ZHOU A J , YAO A B . Omni-dimensional dynamic convolution [C]// Proceedings of the 10th International Conference on Learning Representations . Madrid, Spain : OpenReview.net , 2022 , DOI: 10.48550 http://dx.doi.org/10.48550 .
WANG C Y , BOCHKOVSKIY A , LIAO H Y M . YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver, Canada : IEEE , 2023 : 7464 - 7475 . doi: 10.1109/cvpr52729.2023.00721 http://dx.doi.org/10.1109/cvpr52729.2023.00721
WANG C Y , LIAO M H Y , WU Y H , et al . CSPNet: a new backbone that can enhance learning capability of CNN [C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle, USA : IEEE , 2020 : 1571 - 1580 . doi: 10.1109/cvprw50498.2020.00203 http://dx.doi.org/10.1109/cvprw50498.2020.00203
YU L T , WANG P C , YU X Y , et al . A holistically-nested U-Net: surgical instrument segmentation based on convolutional neural network [J]. Journal of Digital Imaging , 2020 , 33 ( 2 ): 341 - 347 . doi: 10.1007/s10278-019-00277-1 http://dx.doi.org/10.1007/s10278-019-00277-1
SUN Y W , PAN B , FU Y L . Lightweight deep neural network for real-time instrument semantic segmentation in robot assisted minimally invasive surgery [J]. IEEE Robotics and Automation Letters , 2021 , 6 ( 2 ): 3870 - 3877 . doi: 10.1109/lra.2021.3066956 http://dx.doi.org/10.1109/lra.2021.3066956
0
Views
241
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution