1.中国科学院 西安光学精密机械研究所, 陕西 西安 710119
2.中国科学院大学, 北京 100049
3.中国科学院 空间精密测量技术重点实验室, 陕西 西安 710119
扫 描 看 全 文
GAO Yu-ting, PAN An, YAO Bao-li, et al. Overview of two-dimensional high-throughput optical microscopy. [J]. Chinese Journal of Liquid Crystals and Displays 38(6):691-711(2023)
GAO Yu-ting, PAN An, YAO Bao-li, et al. Overview of two-dimensional high-throughput optical microscopy. [J]. Chinese Journal of Liquid Crystals and Displays 38(6):691-711(2023) DOI: 10.37188/CJLCD.2023-0024.
传统光学显微镜的视场与空间分辨率是相互制约的,如何突破这一限制,同时能兼得高分辨率和大视场的高通量成像,成为当前显微成像技术领域的主要研究方向之一。该科学问题的突破将有助于加速科学研究、提高生产制造能力、为医疗辅助诊断提供新工具。本文介绍比较了大孔径物镜制造与曲面探测技术、扫描拼接技术、傅里叶叠层显微成像技术、宽场结构光照明技术和无透镜片上显微成像技术在内的5种高通量显微成像技术。分析了高通量显微成像技术研究的当前现状、所面临的问题以及未来的发展趋势。分析指出,计算光学成像技术正逐渐成为目前高通量显微技术的主要手段,通过计算绕过或者突破光学系统的物理限制将开辟高通量显微成像新时代。
The field of view (FOV) and spatial resolution of conventional optical microscopes are mutually constrained, how to break through this limit, and how to simultaneously obtain high resolution and large FOV for high throughput imaging is one of the main research directions in the field of microscopy. Solving this scientific problem will help to accelerate scientific research, improve manufacturing capabilities, and provide new tools for medically assisted diagnosis. This paper introduces and compares five cutting-edge high-throughput microscopy techniques, including large-aperture objective fabrication and curved detectors, scanning stitching method, Fourier ptychographic microscopy (FPM), wide-field structured light illumination microscopy (SIM) and lens-free on-chip microscopy. The current status, challenge and future trends of high-throughput microscopy techniques are also analyzed and reported. The analysis points out that computational imaging is gradually becoming the main means of high-throughput microscopy, which breaks or bypasses the physical limit of optical microscopy and will open up a new era of high-throughput microscopy imaging.
显微成像高通量计算成像
microscopy imaginghigh throughputcomputational imaging
ZERNIKE F. Phase contrast, a new method for the microscopic observation of transparent objects [J]. Physica, 1942, 9(7): 686-698. doi: 10.1016/s0031-8914(42)80035-xhttp://dx.doi.org/10.1016/s0031-8914(42)80035-x
TWINSCAN NXT. 1970Ci-DUV lithography systems [EB/OL]. [2020-04-29]. https://www.asml.com/en/products/duv-lithography-systems/twinscan-nxt-1965cihttps://www.asml.com/en/products/duv-lithography-systems/twinscan-nxt-1965ci. doi: 10.1007/978-94-017-9780-1_100264http://dx.doi.org/10.1007/978-94-017-9780-1_100264
NIKZAD S, HOENK M E. Curved focal-plane arrays using back-illuminated high-purity photodetectors [R].Amrican:NASA Tech Briefs,27(10) ,2003[2023]. https://www.proquest.com/trade-journals/curved-focal-plan e-arrays-using-back-illuminated/docview/223351355/se-2.
NIKZAD S, HOENK M, JONES T. Solid-state curved focal plane arrays: US, 7786421 [P]. 2010-08-31.
KO H C, STOYKOVICH M P, SONG J Z, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics [J]. Nature, 2008, 454(7205): 748-753. doi: 10.1038/nature07113http://dx.doi.org/10.1038/nature07113
GREGORY J A, SMITH A M, PEARCE E C, et al. Development and application of spherically curved charge-coupled device imagers [J]. Applied Optics, 2015, 54(10): 3072-3082. doi: 10.1364/ao.54.003072http://dx.doi.org/10.1364/ao.54.003072
张国荣,李丽,王文奇.数字切片在组织学实验教学中的应用[J].实验室研究与探索,2017,36(6):216-218,231. doi: 10.3969/j.issn.1006-7167.2017.06.050http://dx.doi.org/10.3969/j.issn.1006-7167.2017.06.050
ZHANG G R, LI L, WANG W Q. Applications of digital slices in histology experiment teaching [J]. Research and Exploration in Laboratory, 2017, 36(6): 216-218, 231. (in Chinese). doi: 10.3969/j.issn.1006-7167.2017.06.050http://dx.doi.org/10.3969/j.issn.1006-7167.2017.06.050
ABELS E, PANTANOWITZ L, AEFFNER F, et al. Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the digital pathology association [J]. The Journal of Pathology, 2019, 249(3): 286-294. doi: 10.1002/path.5331http://dx.doi.org/10.1002/path.5331
HIGGINS C. Applications and challenges of digital pathology and whole slide imaging [J]. Biotechnic & Histochemistry, 2015, 90(5): 341-347. doi: 10.3109/10520295.2015.1044566http://dx.doi.org/10.3109/10520295.2015.1044566
FARAHANI N, PARWANI A V, PANTANOWITZ L. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives [J]. Pathology and Laboratory Medicine International, 2015, 7: 23-33. doi: 10.2147/plmi.s59826http://dx.doi.org/10.2147/plmi.s59826
REDONDO R, CRISTÓBAL G, GARCIA G B, et al. Autofocus evaluation for brightfield microscopy pathology [J]. Journal of Biomedical Optics, 2012, 17(3): 036008. doi: 10.1117/1.jbo.17.3.036008http://dx.doi.org/10.1117/1.jbo.17.3.036008
WANG Z J, LEI M, YAO B L, et al. Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing [J]. Biomedical Optics Express, 2015, 6(11): 4353-4364. doi: 10.1364/boe.6.004353http://dx.doi.org/10.1364/boe.6.004353
ZHENG G A, HORSTMEYER R, YANG C. Wide-field, high-resolution Fourier ptychographic microscopy [J]. Nature Photonics, 2013, 7(9): 739-745. doi: 10.1038/nphoton.2013.187http://dx.doi.org/10.1038/nphoton.2013.187
OU X Z, ZHENG G A, YANG C. Embedded pupil function recovery for Fourier ptychographic microscopy [J]. Optics Express, 2014, 22(5): 4960-4972. doi: 10.1364/oe.22.004960http://dx.doi.org/10.1364/oe.22.004960
BIAN Z C, DONG S Y, ZHENG G A. Adaptive system correction for robust Fourier ptychographic imaging [J]. Optics Express, 2013, 21(26): 32400-32410. doi: 10.1364/oe.21.032400http://dx.doi.org/10.1364/oe.21.032400
ZHENG G A. Breakthroughs in photonics 2013: Fourier ptychographic imaging [J]. IEEE Photonics Journal, 2014, 6(2): 0701207. doi: 10.1109/jphot.2014.2308632http://dx.doi.org/10.1109/jphot.2014.2308632
DONG S Y, NANDA P, SHIRADKAR R, et al. High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography [J]. Optics Express, 2014, 22(17): 20856-20870. doi: 10.1364/oe.22.020856http://dx.doi.org/10.1364/oe.22.020856
DONG S Y, SHIRADKAR R, NANDA P, et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging [J]. Biomedical Optics Express, 2014, 5(6): 1757-1767. doi: 10.1364/boe.5.001757http://dx.doi.org/10.1364/boe.5.001757
HORSTMEYER R, OU X Z, ZHENG G A, et al. Digital pathology with Fourier ptychography [J]. Computerized Medical Imaging and Graphics, 2015, 42: 38-43. doi: 10.1016/j.compmedimag.2014.11.005http://dx.doi.org/10.1016/j.compmedimag.2014.11.005
GUO K K, LIAO J, BIAN Z C, et al. InstantScope: a low-cost whole slide imaging system with instant focal plane detection [J]. Biomedical Optics Express, 2015, 6(9): 3210-3216. doi: 10.1364/boe.6.003210http://dx.doi.org/10.1364/boe.6.003210
GUO K K, DONG S Y, NANDA P, et al. Optimization of sampling pattern and the design of Fourier ptychographic illuminator [J]. Optics Express, 2015, 23(5): 6171-6180. doi: 10.1364/oe.23.006171http://dx.doi.org/10.1364/oe.23.006171
HORSTMEYER R, CHUNG J, OU X Z, et al. Diffraction tomography with Fourier ptychography [J]. Optica, 2016, 3(8): 827-835. doi: 10.1364/optica.3.000827http://dx.doi.org/10.1364/optica.3.000827
PACHECO S, ZHENG G A, LIANG R G. Reflective Fourier ptychography [J]. Journal of Biomedical Optics, 2016, 21(2): 026010. doi: 10.1117/1.jbo.21.2.026010http://dx.doi.org/10.1117/1.jbo.21.2.026010
CHUNG J, KIM J, OU X Z, et al. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography [J]. Biomedical Optics Express, 2016, 7(2): 352-368. doi: 10.1364/boe.7.000352http://dx.doi.org/10.1364/boe.7.000352
ZHENG G A, OU X Z, YANG C. 0.5 gigapixel microscopy using a flatbed scanner [J]. Biomedical Optics Express, 2014, 5(1): 1-8. doi: 10.1364/boe.5.000001http://dx.doi.org/10.1364/boe.5.000001
GUO K K, BIAN Z C, DONG S Y, et al. Microscopy illumination engineering using a low-cost liquid crystal display [J]. Biomedical Optics Express, 2015, 6(2): 574-579. doi: 10.1364/boe.6.000574http://dx.doi.org/10.1364/boe.6.000574
DONG S Y, HORSTMEYER R, SHIRADKAR R, et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging [J]. Optics Express, 2014, 22(11): 13586-13599. doi: 10.1364/oe.22.013586http://dx.doi.org/10.1364/oe.22.013586
HORSTMEYER R, CHEN R Y, OU X Z, et al. Solving ptychography with a convex relaxation [J]. New Journal of Physics, 2015, 17: 053044. doi: 10.1088/1367-2630/17/5/053044http://dx.doi.org/10.1088/1367-2630/17/5/053044
HORSTMEYER R, YANG C. A phase space model of Fourier ptychographic microscopy [J]. Optics Express, 2014, 22(1): 338-358. doi: 10.1364/oe.22.000338http://dx.doi.org/10.1364/oe.22.000338
KIM J, HENLEY B M, KIM C H, et al. Incubator embedded cell culture imaging system (emsight) based on fourier ptychographic microscopy [J]. Biomedical Optics Express, 2016, 7(8): 3097-3110. doi: 10.1364/boe.7.003097http://dx.doi.org/10.1364/boe.7.003097
OU X Z, CHUNG J, HORSTMEYER R, et al. Aperture scanning Fourier ptychographic microscopy [J]. Biomedical Optics Express, 2016, 7(8): 3140-3150. doi: 10.1364/boe.7.003140http://dx.doi.org/10.1364/boe.7.003140
NGUYEN T, XUE Y, LI Y, et al. Deep learning approach for Fourier ptychography microscopy[J]. Optics Express, 2018, 26(20): 26470-26484. doi: 10.1364/oe.26.026470http://dx.doi.org/10.1364/oe.26.026470
CHAN A C S, KIM J, PAN A, et al. Parallel Fourier ptychographic microscopy for high-throughput screening with 96 cameras (96 Eyes) [J]. Scientific Reports, 2019, 9: 11114. doi: 10.1038/s41598-019-47146-zhttp://dx.doi.org/10.1038/s41598-019-47146-z
GAO Y T, CHEN J R, WANG A Y, et al. High-throughput fast full-color digital pathology based on Fourier ptychographic microscopy via color transfer [J]. Science China Physics, Mechanics & Astronomy, 2021, 64(11): 114211. doi: 10.1007/s11433-021-1762-8http://dx.doi.org/10.1007/s11433-021-1762-8
GOODMAN J W. Introduction to Fourier Optics [M]. 4th ed. New York: Springer, 2017.
SUN J S, CHEN Q, ZHANG Y Z, et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space [J]. Optics Express, 2016, 24(14): 15765-15781. doi: 10.1364/oe.24.015765http://dx.doi.org/10.1364/oe.24.015765
ZHANG Y, PAN A, LEI M, et al. Data preprocessing methods for robust Fourier ptychographic microscopy [J]. Optical Engineering, 2017, 56(12): 123107. doi: 10.1117/1.oe.56.12.123107http://dx.doi.org/10.1117/1.oe.56.12.123107
ZHENG G A, OU X Z, HORSTMEYER R, et al. Characterization of spatially varying aberrations for wide field-of-view microscopy [J]. Optics Express, 2013, 21(13): 15131-15143. doi: 10.1364/oe.21.015131http://dx.doi.org/10.1364/oe.21.015131
OU X Z, ZHENG G A, YANG C. Embedded pupil function recovery for Fourier ptychographic microscopy [J]. Optics Express, 2014, 22(5): 4960-4972. doi: 10.1364/oe.22.004960http://dx.doi.org/10.1364/oe.22.004960
SONG P M, JIANG S W, ZHANG H, et al. Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology [J]. APL Photonics, 2019, 4(5): 050802. doi: 10.1063/1.5090552http://dx.doi.org/10.1063/1.5090552
DONG S Y, BIAN Z C, SHIRADKAR R, et al. Sparsely sampled Fourier ptychography [J]. Optics Express, 2014, 22(5): 5455-5464. doi: 10.1364/oe.22.005455http://dx.doi.org/10.1364/oe.22.005455
PAN A, CHAN A C S, YAO B L, et al. In situ correction of liquid meniscus in cell culture imaging system based on parallel Fourier ptychographic microscopy (96 Eyes) [EB/OL]. arXiv preprint, (2019-12-28)[2020-05-18]. https://arxiv.org/abs/1912.00804https://arxiv.org/abs/1912.00804. doi: 10.48550/arXiv.1912.00804http://dx.doi.org/10.48550/arXiv.1912.00804
SUN J S, ZUO C, ZHANG L, et al. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations [J]. Scientific Reports, 2017, 7(1): 1187. doi: 10.1038/s41598-017-01346-7http://dx.doi.org/10.1038/s41598-017-01346-7
PAN A, ZHANG Y, WEN K, et al. Subwavelength resolution Fourier ptychography with hemispherical digital condensers [J]. Optics Express, 2018, 26(18): 23119-23131. doi: 10.1364/oe.26.023119http://dx.doi.org/10.1364/oe.26.023119
SUN J S, CHEN Q, ZHANG Y Z, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy [J]. Biomedical Optics Express, 2016, 7(4): 1336-1350. doi: 10.1364/boe.7.001336http://dx.doi.org/10.1364/boe.7.001336
YEH L H, DONG J, ZHONG J S, et al. Experimental robustness of Fourier ptychography phase retrieval algorithms [J]. Optics Express, 2015, 23(26): 33214-33240. doi: 10.1364/oe.23.033214http://dx.doi.org/10.1364/oe.23.033214
THIBAULT P, GUIZAR-SICAIROS M. Maximum-likelihood refinement for coherent diffractive imaging [J]. New Journal of Physics, 2012, 14: 063004. doi: 10.1088/1367-2630/14/6/063004http://dx.doi.org/10.1088/1367-2630/14/6/063004
BIAN L H, SUO J L, ZHENG G A, et al. Fourier ptychographic reconstruction using Wirtinger flow optimization [J]. Optics Express, 2015, 23(4): 4856-4866. doi: 10.1364/oe.23.004856http://dx.doi.org/10.1364/oe.23.004856
ZUO C, SUN J S, CHEN Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy [J]. Optics Express, 2016, 24(18): 20724-20744. doi: 10.1364/oe.24.020724http://dx.doi.org/10.1364/oe.24.020724
KERRIGAN E C, ALAAMO T. A convex parameterization for solving constrained min-max problems with a quadratic cost[C]//American Control Conference, 2004. Proceedings of the 2004. IEEE, 2004. doi: 10.23919/acc.2004.1383791http://dx.doi.org/10.23919/acc.2004.1383791
ZHANG Y B, JIANG W X, DAI Q H. Nonlinear optimization approach for Fourier ptychographic microscopy [J]. Optics Express, 2015, 23(26): 33822-33835. doi: 10.1364/oe.23.033822http://dx.doi.org/10.1364/oe.23.033822
BIAN L H, SUO J L, CHUNG J, et al. Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient [J]. Scientific Reports, 2016, 6: 27384. doi: 10.1038/srep27384http://dx.doi.org/10.1038/srep27384
FAN Y, SUN J S, CHEN Q, et al. Adaptive denoising method for Fourier ptychographic microscopy [J]. Optics Communications, 2017, 404: 23-31. doi: 10.1016/j.optcom.2017.05.026http://dx.doi.org/10.1016/j.optcom.2017.05.026
PAN A, ZUO C, XIE Y G, et al. Vignetting effect in Fourier ptychographic microscopy [J]. Optics and Lasers in Engineering, 2019, 120: 40-48. doi: 10.1016/j.optlaseng.2019.02.015http://dx.doi.org/10.1016/j.optlaseng.2019.02.015
HAGEMANN J, SALDITT T. Coherence-resolution relationship in holographic and coherent diffractive imaging [J]. Optics Express, 2018, 26(1): 242-253. doi: 10.1364/oe.26.000242http://dx.doi.org/10.1364/oe.26.000242
PAN A, ZHANG Y, ZHAO T Y, et al. System calibration method for Fourier ptychographic microscopy [J]. Journal of Biomedical Optics, 2017, 22(9): 096005. doi: 10.1117/1.jbo.22.9.096005http://dx.doi.org/10.1117/1.jbo.22.9.096005
BIAN L H, ZHENG G A, GUO K K, et al. Motion-corrected Fourier ptychography [J]. Biomedical Optics Express, 2016, 7(11): 4543-4553. doi: 10.1364/boe.7.004543http://dx.doi.org/10.1364/boe.7.004543
SUN J S, CHEN Q, ZUO C, et al. Resolution-improved Fourier ptychographic microscopy using high-numerical-aperture condenser [C]//Proceedings of the SPIE 10462 Optical Sensing and Imaging Technology and Applications. Beijing: SPIE, 2017: 104622D. doi: 10.1117/12.2284458http://dx.doi.org/10.1117/12.2284458
CHEN J R, WANG A Y, PAN A, et al. Rapid full-color Fourier ptychographic microscopy via spatially filtered color transfer [J]. Photonics Research, 2022, 10(10): 2410-2421. doi: 10.1364/prj.473038http://dx.doi.org/10.1364/prj.473038
GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J]. Journal of Microscopy, 2000, 198(Pt 2): 82-87. doi: 10.1046/j.1365-2818.2000.00710.xhttp://dx.doi.org/10.1046/j.1365-2818.2000.00710.x
GUSTAFSSON M G L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086. doi: 10.1073/pnas.0406877102http://dx.doi.org/10.1073/pnas.0406877102
REGO E H, SHAO L, MACKLIN J J, et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50 nm resolution [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): E135-E143. doi: 10.1073/pnas.1107547108http://dx.doi.org/10.1073/pnas.1107547108
LI D, SHAO L, CHEN B C, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics [J]. Science, 2015, 349(6251): eaab3500. doi: 10.1126/science.aab3500http://dx.doi.org/10.1126/science.aab3500
LEE L M, CUI X Q, YANG C. The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts [J]. Biomedical Microdevices, 2009, 11(5): 951-958. doi: 10.1007/s10544-009-9312-xhttp://dx.doi.org/10.1007/s10544-009-9312-x
SU T W, SEO S, ERLINGER A, et al. Towards wireless health: lensless on-chip cytometry [J]. Optics and Photonics News, 2008, 19(12): 24. doi: 10.1364/opn.19.12.000024http://dx.doi.org/10.1364/opn.19.12.000024
ISIKMAN S, SEO S, SENCAN I, et al. Lensfree cell holography on a chip: From holographic cell signatures to microscopic reconstruction [C]//2009 IEEE LEOS Annual Meeting Conference Proceedings. Belek-Antalya: IEEE, 2009: 404-405. doi: 10.1109/leos.2009.5343233http://dx.doi.org/10.1109/leos.2009.5343233
BISHARA W, SU T W, COSKUN A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution [J]. Optics Express, 2010, 18(11): 11181-11191. doi: 10.1364/oe.18.011181http://dx.doi.org/10.1364/oe.18.011181
GREENBAUM A, OZCAN A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy [J]. Optics Express, 2012, 20(3): 3129-3143. doi: 10.1364/oe.20.003129http://dx.doi.org/10.1364/oe.20.003129
BISHARA W, SIKORA U, MUDANYALI O, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array [J]. Lab on a Chip, 2011, 11(7): 1276-1279. doi: 10.1039/c0lc00684jhttp://dx.doi.org/10.1039/c0lc00684j
LUO W, GREENBAUM A, ZHANG Y B, et al. Synthetic aperture-based on-chip microscopy [J]. Light: Science & Applications, 2015, 4(3): e261. doi: 10.1038/lsa.2015.34http://dx.doi.org/10.1038/lsa.2015.34
LUO W, ZHANG Y B, FEIZI A, et al. Pixel super-resolution using wavelength scanning [J]. Light: Science & Applications, 2016, 5(4): e16060. doi: 10.1038/lsa.2016.60http://dx.doi.org/10.1038/lsa.2016.60
SONG P M, JIANG S W, WANG T B, et al. Synthetic aperture ptychography: coded sensor translation for joint spatial-Fourier bandwidth expansion [J]. Photonics Research, 2022, 10(7): 1624-1632. doi: 10.1364/prj.460549http://dx.doi.org/10.1364/prj.460549
ABBE E, LAWSON H. A contribution to the theory of the microscope and the nature of microscopic vision [J]. Proceedings of Bristol Naturalists Society, 1876, 1(2): 200-261.
BARBER D J. Transmission Electron Microscopy: Physics of Image Formation and Microanalysis [M]. Berlin: Springer, 1985. doi: 10.1007/978-3-662-13562-4http://dx.doi.org/10.1007/978-3-662-13562-4
WEINSTEIN R S. Prospects for telepathology [J]. Human Pathology, 1986, 17(5): 433-434. doi: 10.1016/s0046-8177(86)80028-4http://dx.doi.org/10.1016/s0046-8177(86)80028-4
MONTALTO M C, MCKAY R R, FILKINS R J. Autofocus methods of whole slide imaging systems and the introduction of a second-generation independent dual sensor scanning method [J]. Journal of Pathology Informatics, 2011, 2(1): 44. doi: 10.4103/2153-3539.86282http://dx.doi.org/10.4103/2153-3539.86282
MCKAY R R, BAXI V A, MONTALTO M C. The accuracy of dynamic predictive autofocusing for whole slide imaging [J]. Journal of Pathology Informatics, 2011, 2(1): 38. doi: 10.4103/2153-3539.84231http://dx.doi.org/10.4103/2153-3539.84231
姜志国,韩冬兵,袁天云,等.基于全自动控制显微镜的自动聚焦算法研究[J].中国图象图形学报,2004,9(4):396-401. doi: 10.11834/jig.20040476http://dx.doi.org/10.11834/jig.20040476
JIANG Z G, HAN D B, YUAN T Y, et al. Study on auto focusing algorithm for automatic microscope [J]. Journal of Image and Graphics, 2004, 9(4): 396-401. (in Chinese). doi: 10.11834/jig.20040476http://dx.doi.org/10.11834/jig.20040476
潘安,高宇婷,王爱业,等.面向下一代数字病理成像分析仪的高通量全彩色傅里叶叠层显微成像术[J].光子学报,2022,51(7):0751408. doi: 10.3788/gzxb20225107.0751408http://dx.doi.org/10.3788/gzxb20225107.0751408
PAN A, GAO Y T, WANG A Y, et al. High-throughput full-color fourier ptychographic microscopy for the next generation of digital pathologic imager and analyser [J]. Acta Photonica Sinica, 2022, 51(7): 0751408. (in Chinese). doi: 10.3788/gzxb20225107.0751408http://dx.doi.org/10.3788/gzxb20225107.0751408
BROWN W M, PORCELLO L J. An introduction to synthetic-aperture radar [J]. IEEE Spectrum, 1969, 6(9): 52-62. doi: 10.1109/mspec.1969.5213674http://dx.doi.org/10.1109/mspec.1969.5213674
SHERWIN C W, RUINA J P, RAWCLIFFE R D. Some early developments in synthetic aperture radar systems[J]. IRE Transactions on Military Electronics, 1962, MIL-6(2): 111-115. doi: 10.1109/iret-mil.1962.5008415http://dx.doi.org/10.1109/iret-mil.1962.5008415
HAMAMATSU. ORCA-Quest [EB]. Japan: https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/sys/SCAS0152E_ORCA-Quest_concept_brochure.pdfhttps://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/sys/SCAS0152E_ORCA-Quest_concept_brochure.pdf.
SUN J S, ZUO C, ZHANG J L, et al. High-speed Fourier ptychographic microscopy based on programmable annular illuminations [J]. Scientific Reports, 2018, 8(1): 7669. doi: 10.1038/s41598-018-25797-8http://dx.doi.org/10.1038/s41598-018-25797-8
ZHANG J Z, XU T F, SHEN Z Y, et al. Fourier ptychographic microscopy reconstruction with multiscale deep residual network [J]. Optics Express, 2019, 27(6): 8612-8625. doi: 10.1364/oe.27.008612http://dx.doi.org/10.1364/oe.27.008612
SONG S, KIM J, HUR S, et al. Large-area, high-resolution birefringence imaging with polarization-sensitive fourier ptychographic microscopy [J]. ACS Photonics, 2021, 8(1): 158-165. doi: 10.1021/acsphotonics.0c01695http://dx.doi.org/10.1021/acsphotonics.0c01695
ZHANG P W, ZHAO J F, LIN B B, et al. Hyperspectral microscopy imaging based on Fourier ptychographic microscopy [J]. Journal of Optics, 2022, 24(5): 055301. doi: 10.1088/2040-8986/ac57b3http://dx.doi.org/10.1088/2040-8986/ac57b3
ZHENG G A, LEE S A, ANTEBI Y, et al. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM) [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(41): 16889-16894. doi: 10.1073/pnas.1110681108http://dx.doi.org/10.1073/pnas.1110681108
KESAVAN S V, MOMEY F, CIONI O, et al. High-throughput monitoring of major cell functions by means of lensfree video microscopy [J]. Scientific Reports, 2014, 4: 5942. doi: 10.1038/srep05942http://dx.doi.org/10.1038/srep05942
0
Views
80
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution