图1 元素图像失真示意图。(a)成像传感器中心位置的元素图像;(b)~(d)左上、右下、左下位置的光场元素图像。
Received:27 January 2023,
Revised:11 April 2023,
Published:05 June 2023
Scan QR Code
Cite this article
The microlens image may serve deviations from the true projected centers and shape irregularities when the light field imaging system is used in narrow space. This paper analyzed and proposed the distortionless condition for microlens images. The narrow space is modeled as an additional aperture in the light field imaging system, whose pupil size and position in the light field imaging system were related to the distortionless condition. The distortionless condition was studied from three aspects and the experiments were designed including microlens image deviation and arithmetic aperture-shift. Experimental results show the correlation coefficient between the experimental and theoretical result is more than 99%, and aperture-shift measurement is (9.97±1.5) mm. The distortionless condition is proved by experimental results, which can be used to guide the design of light field imaging system and analyze the microlens image distortion parameters quantitatively.
与传统二维成像不同,光场成像可以同时记录光线的方向与位置信息,在工业、医疗等领域存在巨大的应用潜力[
四维光场成像系统的构建具有多种方式。2005年,斯坦福大学的Wilburn等[
本文将光线受实际工作环境的约束抽象为主透镜物空间存在额外孔阑,并定量地分析了孔阑尺寸、位置与元素图像之间的关系,提出了光场成像中元素图像不失真条件,并设计了实验加以验证。
图1 元素图像失真示意图。(a)成像传感器中心位置的元素图像;(b)~(d)左上、右下、左下位置的光场元素图像。
Fig.1 Schematic diagram of microlens image distortion. (a) Microlens image in the center of picture sensor; (b)~(d) Microlens images in the upper left, lower right and lower left.
基于TPP模型,本文对光场成像系统做如下定义:如
图2 添加额外孔阑的光场成像模型
Fig.2 Light field imaging model with additional aperture
由于位置信息的两个维度之间为正交关系,本文只分析其中一个维度。如
(1) |
根据孔阑尺寸及其与主透镜平面所在位置的距离,本文分3种情况研究元素图像的失真问题。
情况1: 对于主透镜物空间中的一点
图3 孔阑对光线没有约束
Fig.3 Aperture has no constraint on light
设
(2) |
当
(3) |
其中:
情况2:对于主透镜物空间中的一点
图4 孔阑约束部分光线
Fig.4 Aperture has part of constraints on light
因负半轴的光线受约束较大,此时分析正半轴情况,有
(4) |
当
(5) |
主透镜物空间的孔阑对
(6) |
(7) |
其中:
(8) |
从
情况3:对于主透镜物空间中的一点
(9) |
图5 孔阑和主透镜均对光线有约束
Fig.5 Both the aperture and the main lens have constraints on light
物点发出的光线同时受孔阑与主透镜约束的条件为
(10) |
由于物点发出的光线在主透镜正负半轴的约束情况存在差异,因此元素图像将出现明显的失真现象,光场成像系统得到椭圆形元素图像,如
图6 元素图像偏移。(a)二维光场图像右上角图; (b)二维光场图像左下角图。
Fig.6 Microlens image deviation. (a) Upper right of the 2D light field image; (b) Lower left of the 2D light field image.
综上,当孔阑的尺寸、位置不同时,代表了光场成像系统受到环境的不同约束。当
为验证本文提出的元素图像不失真条件,本文使用Illum光场相机开展实验并采用我们以往提出的两步标定法计算得到光场相机的系统参数[
根据
图7 元素图像中心偏移定量分析图
Fig.7 Quantitative analysis of microlens image deviation
从
根据
孔阑位置 | |
---|---|
1 | - |
2 | 8.85 |
3 | 7.71 |
4 | 11.90 |
5 | 10.36 |
6 | 11.03 |
实验得到的
在实际应用中,因应用环境狭小空间的限制,物点发出的光线可能存在被环境约束而不能到达光场成像系统的情况。此时,元素图像可能出现中心偏移与形状改变等现象,影响光场图像的解码与后续应用。本文将环境约束抽象为主透镜物空间的额外孔阑约束,定量地分析了孔阑尺寸、位置与光场成像间的关系,提出了光场成像的元素图像不失真条件,并设计实验加以验证。实验结果表明,元素图像中心偏移的实验结果与理论分析的相关性高于99%,孔阑等差移动测量值为(9.97±1.5) mm。在光场成像系统设计中,若应用环境属于狭小空间时,受环境约束的成像物体尺寸与成像系统参数之间的量化关系应满足元素图像不失真条件。因此,元素图像不失真条件有助于光场成像系统的设计,在实际应用中避免因元素图像失真而导致错误结论。
TIAN L, WALLER L. 3D intensity and phase imaging from light field measurements in an LED array microscope [J]. Optica, 2015, 2(2): 104-111. doi: 10.1364/optica.2.000104 [Baidu Scholar]
XIONG B, ZHU T Y, XIANG Y H, et al. Mirror-enhanced scanning light-field microscopy for long-term high-speed 3D imaging with isotropic resolution [J]. Light: Science & Applications, 2021, 10: 227. doi: 10.1038/s41377-021-00665-9 [Baidu Scholar]
翟家振,施汝恒,孔令杰.光场显微镜及其在三维生物成像中的应用[J].物理与工程,2022,32(2):147-150. doi: 10.3969/j.issn.1009-7104.2022.02.025 [Baidu Scholar]
ZHAI J Z, SHI R H, KONG L J. Light field microscope and its applications in 3D biomedical imaging [J]. Physics and Engineering, 2022, 32(2): 147-150. (in Chinese). doi: 10.3969/j.issn.1009-7104.2022.02.025 [Baidu Scholar]
张石磊,崔宇,邢慕增,等.光场成像目标测距技术[J].中国光学,2020,13(6):1332-1342. doi: 10.37188/co.2020-0043 [Baidu Scholar]
ZHANG S L, CUI Y, XING M Z, et al. Light field imaging target ranging technology [J]. Chinese Optics, 2020, 13(6): 1332-1342. (in Chinese). doi: 10.37188/co.2020-0043 [Baidu Scholar]
LEVOY M, HANRAHAN P. Light field rendering [C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New Orleans, USA: ACM, 1996: 31-42. doi: 10.1145/237170.237199 [Baidu Scholar]
WILBURN B, JOSHI N, VAISH V, et al. High performance imaging using large camera arrays [J]. ACM Transactions on Graphics, 2005, 24(3): 765-776. doi: 10.1145/1073204.1073259 [Baidu Scholar]
LI K, DAI Q H, XU W L, et al. Temporal-dense dynamic 3-D reconstruction with low frame rate cameras [J]. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(5): 447-459. doi: 10.1109/jstsp.2012.2194475 [Baidu Scholar]
NG R. Digital light field photography [D]. Stanford: Stanford University, 2006. doi: 10.1364/iodc.2006.wb2 [Baidu Scholar]
LEVOY M, ZHANG Z, MCDOWALL I. Recording and controlling the 4D light field in a microscope using microlens arrays [J]. Journal of Microscopy, 2009, 235(2): 144-162. doi: 10.1111/j.1365-2818.2009.03195.x [Baidu Scholar]
郭正华.基于微透镜阵列光场成像的深度反演技术研究[D].成都:中国科学院大学(中国科学院光电技术研究所),2020. [Baidu Scholar]
GUO Z H. Research on depth retrieval for lenslet based light field imaging [D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2020. (in Chinese) [Baidu Scholar]
DANSEREAU D G, PIZARRO O, WILLIAMS S B. Decoding, calibration and rectification for lenselet-based plenoptic cameras [C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013. doi: 10.1109/cvpr.2013.137 [Baidu Scholar]
张旭,李晨.微透镜阵列式光场成像模型及其标定方法[J].光学学报,2014,34(12):1211005. doi: 10.3788/aos201434.1211005 [Baidu Scholar]
ZHANG X, LI C. Calibration and imaging model of light field camera with microlens array [J]. Acta Optica Sinica, 2014, 34(12): 1211005. (in Chinese). doi: 10.3788/aos201434.1211005 [Baidu Scholar]
HAHNE C, AGGOUN A. PlenoptiCam v1.0: a light-field imaging framework [J]. IEEE Transactions on Image Processing, 2021, 30: 6757-6771. doi: 10.1109/tip.2021.3095671 [Baidu Scholar]
SCHAMBACH M, LEÓN F P. Microlens array grid estimation, light field decoding, and calibration [J]. IEEE Transactions on Computational Imaging, 2020, 6: 591-603. doi: 10.1109/tci.2020.2964257 [Baidu Scholar]
蔡维嘉.光场相机标定算法研究[D].南京:东南大学,2020. [Baidu Scholar]
CAI W J. Research on calibration method for light field camera [D]. Nanjing: Southeast University, 2020. (in Chinese) [Baidu Scholar]
364
Views
148
Downloads
0
CSCD
Related Articles
Related Author
Related Institution