图1 基于反射偏振膜的增强现实2D/3D兼容显示系统示意图
Received:31 December 2022,
Revised:06 January 2023,
Published:05 June 2023
Scan QR Code
Cite this article
In order to apply two-dimensional (2D)/three-dimensional (3D) compatible display technology into augmented reality display devices, this paper proposed an augmented reality 2D/3D compatible display system based on lens array holographic optical element and reflective polarizer. By using reflective polarizer to reflect or transmit the projection light, the reflected light loaded with 2D image source is used to realize 2D display, and the transmitted light loaded with 3D image source is used to realize 3D display after being modulated by lens array holographic optical element. Both reflective polarizer and lens array holographic optical element have good ambient transmittance, which makes the display system own optical see-through property for augmented reality application. The experimental results indicate that the proposed augmented reality 2D/3D compatible display system can switch freely between 2D and 3D display modes, and the ambient contrast ratio of the system is higher than 3∶1, which is the standard value of display.
3D显示能够将物体的深度和视差信息真实地再现出来,给观看者带来逼真的视觉体验,是最贴近人类视觉习惯的显示方式,在医疗、军事、教育、娱乐等领域有着重要的应用价值[
自从2D/3D兼容显示技术提出以来,许多研究人员开展了相关的研究。一部分研究通过改变显示器背光来实现2D/3D兼容显示。韩国首尔大学的Lee教授团队采用聚合物分散液晶,通过电压控制聚合物分散液晶的散射或透射状态,实现了2D和3D显示模式的切换[
在增强现实显示中,光学组合器是最核心的光学器件。全息光学元件(Holographic optical element,HOE)因其具有高衍射效率和环境光透过率且体积轻薄,受到了诸多研究者的青睐[
本文提出了基于反射偏振膜的增强现实2D/3D兼容显示系统。该系统将反射偏振膜与LAHOE结合在一起,利用反射偏振膜对水平或垂直偏振光分别呈现透射或反射的性质,反射光束用于2D显示,透射光束经LAHOE调制后实现3D显示,环境光则能透过反射偏振膜和LAHOE,保证系统的2D和3D显示模式均具有较好的光学透过特性。该系统结构简单,光学组合器利用率高,不需要复杂的机械运动和额外的附加电源,可根据观看者的显示需求,实时调整投影片源和投影光束的偏振态来实现增强现实2D和3D显示模式之间的自由切换。
本文提出了基于反射偏振膜的增强现实2D/3D兼容显示系统,系统结构如
图1 基于反射偏振膜的增强现实2D/3D兼容显示系统示意图
Fig.1 Diagram of the proposed augmented reality 2D/3D compatible display system based on reflective polarizer
本系统的偏振相关特性主要由反射偏振膜决定,其光学调制特性如图
图2 反射偏振膜对不同偏振光的调制作用
Fig.2 Modulation of reflective polarizer on different polarized lights
该系统的3D显示模式主要由LAHOE来实现。HOE本质是一种体积全息图,能够实现一个或多个光学元件对光线的调制功能并且具有高衍射效率和环境光透过率。该系统所用的HOE能够实现透镜阵列对光线的调制功能,即LAHOE,其记录和再现过程如
图3 LAHOE的记录和再现过程
Fig.3 Recording and reconstruction processes of LAHOE
图4 增强现实2D/3D显示原理图
Fig.4 Schematic diagram of augmented reality 2D/3D display
在2D显示模式下,如
光学透视式显示器作为一种透明设备,对显示亮度有着严格的要求。为此,我们对本系统在2D和3D显示模式下的环境光对比度(Ambient contrast ratio,ACR)进行定量分析。一般显示系统的环境光对比度被定义为[
(1) |
其中:Lon(Loff)原表示显示设备开(关)状态下的亮度,在本文所提出的光学透视式显示系统中表示投影设备开(关)状态下的亮度,即LAHOE发生(未发生)衍射下的亮度,单位为cd/m2;Lambient为环境亮度;T为反射偏振膜和LAHOE的组合透过率。
环境照明条件通常用照度(lx)来衡量,但为了进行比较,需将照度转换为亮度,即将
在增强现实显示中,显示标准要求可识别图像的最小ACR为3∶1,具有足够可读性的ACR为5∶1,而具有吸引人的显示质量的ACR要超过10∶1[
在3D显示模式下,有两部分光将进入人眼视区:环境光和系统设备发出的光。其中环境光在经过反射偏振膜和LAHOE后,发生多次反射和透射,这里只计算环境光发生两次反射的光线,即如
(2) |
其中,R1、R2、和L1分别表示为:
(3) |
(4) |
(5) |
其中:Rrp表示反射偏振膜对环境光的反射率,RLAHOE表示LAHOE对环境光的反射率,Rdrs表示反射偏振膜对于水平偏振光发生漫反射的反射率。
图5 增强现实2D/3D兼容显示系统的ACR分析
Fig.5 ACR analysis of augmented reality 2D/3D compatible display system
在2D显示模式下,同样有两部分光进入人眼。环境光部分与3D显示模式下一致,但是由于2D显示在反射偏振膜上进行,投影设备发出的偏振光Lprojector将直接经过反射偏振膜并发生漫反射,形成L2,如
(6) |
L2可表示为:
(7) |
其中Rdrc表示反射偏振膜对于垂直偏振光发生漫反射的反射率。
实验中采用LitiHolo的光敏聚合物作为全息材料,LAHOE 具体记录方式在2.2节中已提出,实验光路如
图6 实验装置图
Fig.6 Experimental setups
实验制作的LAHOE的有效曝光面积为46 mm×46 mm,参考光和信号光光强约为1 mW/cm2,曝光时间为30 s,所记录透镜阵列焦距为3.3 mm,节距为1 mm。在3D显示模式下测得的衍射效率为89%。
增强现实2D/3D兼容显示系统的显示效果如
图7 增强现实2D/3D兼容显示系统显示效果
Fig.7 Display results of the augmented reality 2D/3D compatible display system
由于HOE具有独特的波长选择性,在利用LAHOE实现3D显示时,其最大衍射效率对应的探照光波长只与记录时参考光和信号光的波长一致;对于其他波长的探照光,其衍射效率会降至最低。实验中参考光和信号光的波长均为532 nm,因此该系统在3D模式下只能实现单色显示。由于HOE体积轻薄,可通过将RGB三种颜色对应波长的信号光和参考光分别记录得到的LAHOE叠加在一起,实现彩色3D图像显示。
在测试ACR时,由于采取的是投影方式来实现2D和3D显示,因此投影距离会影响显示亮度。随着投影距离增加,亮度会随之减弱,故固定投影距离为160 mm,分别在5种不同的环境光条件下测试ACR。
图8 反射偏振膜在不同显示模式下的反射率和透过率
Fig.8 Reflectivity and transmittance of the reflective polarizer in different display modes
图9 增强现实2D/3D兼容显示系统在不同显示模式下的ACR曲线
Fig.9 ACR curves of the augmented reality 2D/3D compatible display system in different display mode
本文提出了一种增强现实2D/3D兼容显示系统,通过结合LAHOE和反射偏振膜,利用反射偏振膜对水平和垂直偏振方向的光束不同的光学调制特性,对应实现2D和3D显示功能,且通过偏振控制器对入射光偏振方向实时改变并同步切换显示片源,实现了2D和3D显示模式的自由切换。基于LAHOE和反射偏振膜对环境光的透射作用,在2D和3D显示模式下均能满足增强现实的光学透视效果。实验结果表明,所提方法实现了增强现实2D/3D兼容显示,实验系统具有一定的光学透视特性,其2D和3D显示模式下的ACR值均大于显示规则要求的标准值3∶1。该系统体积小,既能实现2D/3D兼容显示又具有较好的光学透视特性和环境光对比度,为增强现实技术的发展开辟了更广阔的空间。
王琼华,邓欢.集成成像3D拍摄与显示方法[J].液晶与显示,2014,29(2):153-158. doi: 10.3788/YJYXS20142902.0153 [Baidu Scholar]
WANG Q H, DENG H. 3D pickup and display method of integral imaging [J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(2): 153-158. (in Chinese). doi: 10.3788/YJYXS20142902.0153 [Baidu Scholar]
PARK J H, KIM H R, KIM Y, et al. Depth-enhanced three-dimensional‒two-dimensional convertible display based on modified integral imaging [J]. Optics Letters, 2004, 29(23): 2734-2736. doi: 10.1364/ol.29.002734 [Baidu Scholar]
XIONG J H, HSIANG E L, HE Z Q, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives [J]. Light: Science & Applications, 2021, 10(1): 216. doi: 10.1038/s41377-021-00658-8 [Baidu Scholar]
PARK J H, KIM J, KIM Y, et al. Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging [J]. Optics Express, 2005, 13(6): 1875-1884. doi: 10.1364/opex.13.001875 [Baidu Scholar]
CHO S W, PARK J H, KIM Y, et al. Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging [J]. Optics Letters, 2006, 31(19): 2852-2854. doi: 10.1364/ol.31.002852 [Baidu Scholar]
DENG H, XIONG Z L, XING Y, et al. A high optical efficiency 3D/2D convertible integral imaging display [J]. Journal of the Society for Information Display, 2016, 24(2): 85-89. doi: 10.1002/jsid.421 [Baidu Scholar]
WANG Z, WANG A T, WANG S L, et al. High optical efficiency lensless 2D-3D convertible integral imaging display using an edge-lit light guide plate [J]. Journal of Display Technology, 2016, 12(12): 1706-1709. [Baidu Scholar]
HONG J, KIM Y, PARK S G, et al. 3D/2D convertible projection-type integral imaging using concave half mirror array [J]. Optics Express, 2010, 18(20): 20628-20637. doi: 10.1364/oe.18.020628 [Baidu Scholar]
CHOU P Y, WU J Y, HUANG S H, et al. Hybrid light field head-mounted display using time-multiplexed liquid crystal lens array for resolution enhancement [J]. Optics Express, 2019, 27(2): 1164-1177. doi: 10.1364/oe.27.001164 [Baidu Scholar]
HONG K, YEOM J, JANG C, et al. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality [J]. Optics Letters, 2014, 39(1): 127-130. doi: 10.1364/ol.39.000127 [Baidu Scholar]
JANG C, HONG K, YEOM J, et al. See-through integral imaging display using a resolution and fill factor-enhanced lens-array holographic optical element [J]. Optics Express, 2014, 22(23): 27958-27967. doi: 10.1364/oe.22.027958 [Baidu Scholar]
LEE S, JANG C, CHO J, et al. Viewing angle enhancement of an integral imaging display using Bragg mismatched reconstruction of holographic optical elements [J]. Applied Optics, 2016, 55(3): A95-A103. doi: 10.1364/ao.55.000a95 [Baidu Scholar]
YEOM J, JEONG J, JANG C, et al. Three-dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element [J]. Applied Optics, 2015, 54(30): 8856-8862. doi: 10.1364/ao.54.008856 [Baidu Scholar]
HONG K, YEOM J, JANG C, et al. Two-dimensional and three-dimensional transparent screens based on lens-array holographic optical elements [J]. Optics Express, 2014, 22(12): 14363-14374. doi: 10.1364/oe.22.014363 [Baidu Scholar]
ZHANG H L, DENG H, LI J J, et al. Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal [J]. Optics Letters, 2019, 44(2): 387-390. doi: 10.1364/ol.44.000387 [Baidu Scholar]
JI Q L, DENG H, ZHANG H L, et al. Optical see-through 2D/3D compatible display using variable-focus lens and multiplexed holographic optical elements [J]. Photonics, 2021, 8(8): 297. doi: 10.3390/photonics8080297 [Baidu Scholar]
LI Q, HE W, DENG H, et al. High-performance reflection-type augmented reality 3D display using a reflective polarizer [J]. Optics Express, 2021, 29(6): 9446-9453. doi: 10.1364/oe.421879 [Baidu Scholar]
SINGH R, UNNI K N N, SOLANKI A, et al. Improving the contrast ratio of OLED displays: an analysis of various techniques [J]. Optical Materials, 2012, 34(4): 716-723. doi: 10.1016/j.optmat.2011.10.005 [Baidu Scholar]
CHEN H W, TAN G J, WU S T. Ambient contrast ratio of LCDs and OLED displays [J]. Optics Express, 2017, 25(26): 33643-33656. doi: 10.1364/oe.25.033643 [Baidu Scholar]
566
Views
223
Downloads
0
CSCD
Related Articles
Related Author
Related Institution