Differential phase contrast imaging system based four quadrants liquid crystal device
Device Physics and Device Preparation|更新时间:2023-04-10
|
Differential phase contrast imaging system based four quadrants liquid crystal device
Chinese Journal of Liquid Crystals and DisplaysVol. 38, Issue 4, Pages: 456-461(2023)
作者机构:
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100049
3.中科聚研(吉林)干细胞科技有限公司, 吉林 吉林 132000
作者简介:
基金信息:
Supported by National Key R&D Program of China(2021YFB3600300);National Natural Science Foundation of China(11974345;61975202;U2241224);High Technology Industrialization Project of Science and Technology Cooperation between Jilin Province and Chinese Academy of Sciences(2023SYHZ0039)
WU Pei-lin, PENG Zeng-hui, MU Quan-quan, et al. Differential phase contrast imaging system based four quadrants liquid crystal device[J]. Chinese journal of liquid crystals and displays, 2023, 38(4): 456-461.
DOI:
WU Pei-lin, PENG Zeng-hui, MU Quan-quan, et al. Differential phase contrast imaging system based four quadrants liquid crystal device[J]. Chinese journal of liquid crystals and displays, 2023, 38(4): 456-461. DOI: 10.37188/CJLCD.2022-0367.
Differential phase contrast imaging system based four quadrants liquid crystal device
In the field of microscopic imaging, the acquisition of high-quality images is closely related to good illumination mode. Traditional microscopes use a condensing lens to provide illumination with uniform intensity and adjust the aperture of the condensing lens to match the objective lenses with different magnification. However, it is difficult to observe the details of colorless biological cells which optical absorption coefficient is low under the traditional microscope. In order to improve the imaging capacity of traditional microscopes, this paper designs a kind of adjustable microscope condenser module. Bright field imaging and differential phase contrast imaging can be achieved by embedding a small twisted liquid crystal device in the back focal plane of the condenser lens to regulate the light transmission effect of the liquid crystal device. The system is refitted from a commercial microscope. The size of the liquid crystal device is 22 mm×18 mm, which realizes the high integration of the system. The imaging performance of the system is verified through experiments and the correlation coefficient between experimental and theoretical curves reaches 0.994 9. The reconstruction of embryonic stem cells shows the effect of the system in practical application.
关键词
Keywords
references
ICHA J , WEBER M , WATERS J C , et al . Phototoxicity in live fluorescence microscopy, and how to avoid it [J]. BioEssays , 2017 , 39 ( 8 ): 1700003 . doi: 10.1002/bies.201700003 http://dx.doi.org/10.1002/bies.201700003
LI J J , ZHOU N , SUN J S , et al . Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy [J]. Light: Science & Applications , 2022 , 11 ( 1 ): 154 . doi: 10.1038/s41377-022-00815-7 http://dx.doi.org/10.1038/s41377-022-00815-7
LUO Y , ZHAO Y F , LI J X , et al . Computational imaging without a computer: seeing through random diffusers at the speed of light [J]. eLight , 2022 , 2 : 4 . doi: 10.1186/s43593-022-00012-4 http://dx.doi.org/10.1186/s43593-022-00012-4
ARNISON M R , LARKIN K G , SHEPPARD C J R , et al . Linear phase imaging using differential interference contrast microscopy [J]. Journal of Microscopy , 2004 , 214 ( 1 ): 7 - 12 . doi: 10.1111/j.0022-2720.2004.01293.x http://dx.doi.org/10.1111/j.0022-2720.2004.01293.x
HAMILTON D K , SHEPPARD C J R . Differential phase contrast in scanning optical microscopy [J]. Journal of Microscopy , 1984 , 133 ( 1 ): 27 - 39 . doi: 10.1111/j.1365-2818.1984.tb00460.x http://dx.doi.org/10.1111/j.1365-2818.1984.tb00460.x
GUO K K , BIAN Z C , DONG S Y , et al . Microscopy illumination engineering using a low-cost liquid crystal display [J]. Biomedical Optics Express , 2015 , 6 ( 2 ): 574 - 579 . doi: 10.1364/boe.6.000574 http://dx.doi.org/10.1364/boe.6.000574
TIAN L , WALLER L . Quantitative differential phase contrast imaging in an LED array microscope [J]. Optics Express , 2015 , 23 ( 9 ): 11394 - 11403 . doi: 10.1364/oe.23.011394 http://dx.doi.org/10.1364/oe.23.011394
ZUO C , SUN J S , FENG S J , et al . Programmable aperture microscopy: a computational method for multi-modal phase contrast and light field imaging [J]. Optics and Lasers in Engineering , 2016 , 80 : 24 - 31 . doi: 10.1016/j.optlaseng.2015.12.012 http://dx.doi.org/10.1016/j.optlaseng.2015.12.012
HAMILTON D K , SHEPPARD C J R , WILSON T . Improved imaging of phase gradients in scanning optical microscopy [J]. Journal of Microscopy , 1984 , 135 ( 3 ): 275 - 286 . doi: 10.1111/j.1365-2818.1984.tb02533.x http://dx.doi.org/10.1111/j.1365-2818.1984.tb02533.x
STREIBL N . Three-dimensional imaging by a microscope [J]. Journal of the Optical Society of America A , 1985 , 2 ( 2 ): 121 - 127 . doi: 10.1364/josaa.2.000121 http://dx.doi.org/10.1364/josaa.2.000121
BORN M . Principles of optics-electromagnetic theory of propagation, interference and diffraction of light [J]. Diffraction Theory , 1975 : 568 - 574 .
MEHTA S B , SHEPPARD C J R . Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast [J]. Optics Letters , 2009 , 34 ( 13 ): 1924 - 1926 . doi: 10.1364/ol.34.001924 http://dx.doi.org/10.1364/ol.34.001924
HUANG Z Q . Principle of Liquid Crystal Display [M]. 2nd ed . Beijing : National Defense Industry Press , 2013 . (in Chinese) . doi: 10.21236/ada276415 http://dx.doi.org/10.21236/ada276415
CHEN Y J , LIN Y Z , VYAS S , et al . Time-lapse imaging using dual-color coded quantitative differential phase contrast microscopy [J]. Journal of Biomedical Optics , 2022 , 27 ( 5 ): 056002 . doi: 10.1117/1.jbo.27.5.056002 http://dx.doi.org/10.1117/1.jbo.27.5.056002