1.北京化工大学 材料科学与工程学院, 北京 100029
扫 描 看 全 文
TIAN Xiang-hui, SUN Hao, ZENG Shuang-shuang, et al. Recent progress in oblique heliconical cholesteric liquid crystal materials. [J]. Chinese Journal of Liquid Crystals and Displays 37(12):1507-1519(2022)
TIAN Xiang-hui, SUN Hao, ZENG Shuang-shuang, et al. Recent progress in oblique heliconical cholesteric liquid crystal materials. [J]. Chinese Journal of Liquid Crystals and Displays 37(12):1507-1519(2022) DOI: 10.37188/CJLCD.2022-0249.
通过外场实现手性液晶选择性反射的动态调控是目前的重要研究方向之一。近年来人们发现了一种特殊的向列相——扭曲-弯曲向列相(Twist-bend Nematic, N,tb,),其与手性分子的混合物在电场诱导下可以形成一种具有斜螺旋结构的新型胆甾相,称为倾斜螺旋胆甾相(Oblique Heliconical Cholesterics, Ch,OH,)。不同于普通胆甾相的电场调制性能,Ch,OH,的螺距在一定范围内随电场强度增大而减小,因此可以实现从紫外到近红外宽光谱范围的选择性反射。这一特性引起了研究人员的广泛关注,也使得Ch,OH,液晶材料在全色反射显示器、智能窗户、可调谐滤波器、全息以及其他应用领域有巨大的应用潜力。本文在简述Ch,OH,液晶的特征基础上,重点总结了近年来外场调控Ch,OH,液晶以及聚合物复合Ch,OH,液晶的研究进展,并对其未来发展趋势进行了展望。
Dynamic control of selective reflection of chiral liquid crystals (LCs) through the external field is one of the important research directions. In recent years, a special nematic phase, twist-bend nematic (N,tb,), has been discovered, and a new type of oblique heliconical cholesteric phase (Ch,OH,) can be formed by mixing N,tb, mixture with chiral molecules under electric field induction. Different from the electric-field modulation performance of ordinary cholesteric phase, the pitch of Ch,OH, decreases in a certain range with increasing electric field intensity, thus realizing the wide range switching of selective reflection from ultraviolet to near infrared spectra. This phenomenon caused the wide attention of the researchers, and it also makes the Ch,OH, LCs material have great potential in reflective display, smart windows, tunable filters, holograms and other applications. On the basis of a brief introduction of the characteristics of Ch,OH, LCs, this review paper focuses on the recent research progress of field-controlled Ch,OH, LCs and polymer/Ch,OH, LCs composites, and prospects their future development trends.
液晶倾斜螺旋胆甾相动态调制反射色
liquid crystaloblique heliconical cholestericsdynamic modulationreflection color
MEYER R B. Effects of electric and magnetic fields on the structure of cholesteric liquid crystals [J]. Applied Physics Letters, 1968, 12(9): 281-282. doi: 10.1063/1.1651992http://dx.doi.org/10.1063/1.1651992
DE GENNES P G. Calcul de la distorsion d'une structure cholesterique par un champ magnetique [J]. Solid State Communications, 1968, 6(3): 163-165. doi: 10.1016/0038-1098(68)90024-0http://dx.doi.org/10.1016/0038-1098(68)90024-0
余丽红,刘炳辉,沈冬,等.特殊液晶光学材料——扭曲-弯曲向列相液晶及应用[J].液晶与显示,2020,35(7):645-661. doi: 10.37188/YJYXS20203507.0645http://dx.doi.org/10.37188/YJYXS20203507.0645
YU L H, LIU B H, SHEN D, et al. Special liquid crystal optical materials—Twist-bend nematic phase liquid crystals and the applications [J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 645-661. (in Chinese). doi: 10.37188/YJYXS20203507.0645http://dx.doi.org/10.37188/YJYXS20203507.0645
MEYER C, LUCKHURST G R, DOZOV I. Flexoelectrically driven electroclinic effect in the twist-bend nematic phase of achiral molecules with bent shapes [J]. Physical Review Letters, 2013, 111(6): 067801. doi: 10.1103/physrevlett.111.067801http://dx.doi.org/10.1103/physrevlett.111.067801
DOZOV I. On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules [J]. Europhysics Letters, 2001, 56(2): 247-253. doi: 10.1209/epl/i2001-00513-xhttp://dx.doi.org/10.1209/epl/i2001-00513-x
PANOV V P, NAGARAJ M, VIJ J K, et al. Spontaneous periodic deformations in nonchiral planar-aligned bimesogens with a nematic-nematic transition and a negative elastic constant [J]. Physical Review Letters, 2010, 105(16): 167801. doi: 10.1103/physrevlett.105.167801http://dx.doi.org/10.1103/physrevlett.105.167801
CHEN D, PORADA J H, HOOPER J B, et al. Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(40): 15931-15936. doi: 10.1073/pnas.1314654110http://dx.doi.org/10.1073/pnas.1314654110
CESTARI M, DIEZ-BERART S, DUNMUR D A, et al. Phase behavior and properties of the liquid-crystal dimer 1", 7"-bis(4-cyanobiphenyl-4’-yl) heptane: a twist-bend nematic liquid crystal [J]. Physical Review E, 2011, 84(3): 031704. doi: 10.1103/physreve.84.031704http://dx.doi.org/10.1103/physreve.84.031704
XIANG J, SHIYANOVSKII S V, IMRIE C, et al. Electrooptic response of chiral nematic liquid crystals with oblique helicoidal director [J]. Physical Review Letters, 2014, 112(21): 217801. doi: 10.1103/physrevlett.112.217801http://dx.doi.org/10.1103/physrevlett.112.217801
FENG C, FENG J, SAHA R, et al. Manipulation of the nanoscale heliconical structure of a twist-bend nematic material with polarized light [J]. Physical Review Research, 2020, 2(3): 032004. doi: 10.1103/physrevresearch.2.032004http://dx.doi.org/10.1103/physrevresearch.2.032004
BALACHANDRAN R, PANOV V P, VIJ J K, et al. Elastic properties of bimesogenic liquid crystals [J]. Liquid Crystals, 2013, 40(5): 681-688. doi: 10.1080/02678292.2013.765973http://dx.doi.org/10.1080/02678292.2013.765973
BORSHCH V, KIM Y K, XIANG J, et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation [J]. Nature Communications, 2013, 4: 2635. doi: 10.1038/ncomms3635http://dx.doi.org/10.1038/ncomms3635
ADLEM K, ČOPIČ M, LUCKHURST G R, et al. Chemically induced twist-bend nematic liquid crystals, liquid crystal dimers, and negative elastic constants [J]. Physical Review E, 2013, 88(2): 022503. doi: 10.1103/physreve.88.022503http://dx.doi.org/10.1103/physreve.88.022503
XIANG J, VARANYTSIA A, MINKOWSKI F, et al. Electrically tunable laser based on oblique heliconical cholesteric liquid crystal [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(46): 12925-12928. doi: 10.1073/pnas.1612212113http://dx.doi.org/10.1073/pnas.1612212113
SALILI S M, XIANG J, WANG H, et al. Magnetically tunable selective reflection of light by heliconical cholesterics [J]. Physical Review E, 2016, 94(4): 042705. doi: 10.1103/physreve.94.042705http://dx.doi.org/10.1103/physreve.94.042705
XIANG J, LI Y N, LI Q, et al. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics [J]. Advanced Materials, 2015, 27(19): 3014-3018. doi: 10.1002/adma.201500340http://dx.doi.org/10.1002/adma.201500340
LAVRENTOVICH O D. Electromagnetically tunable cholesterics with oblique helicoidal structure [J]. Optical Materials Express, 2020, 10(10): 2415-2424. doi: 10.1364/ome.403810http://dx.doi.org/10.1364/ome.403810
MRUKIEWICZ M, IADLOVSKA O S, BABAKHANOVA G, et al. Wide temperature range of an electrically tunable selective reflection of light by oblique helicoidal cholesteric [J]. Liquid Crystals, 2019, 46(10): 1544-1550. doi: 10.1080/02678292.2019.1587528http://dx.doi.org/10.1080/02678292.2019.1587528
贾淑珍, 袁丛龙, 刘炳辉, 等. 基于胆甾相液晶倾斜螺旋的宽光谱动态域光电调制[J]. 液晶与显示, 2021, 36(8):1061-1068. doi: 10.37188/CJLCD.2021-0129http://dx.doi.org/10.37188/CJLCD.2021-0129
JIA S Z, YUAN C L, LIU B H, et al. Photoelectronic modulation of broad spectral dynamic range based on heliconical cholesteric liquid crystals [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(8): 1061-1068.(in Chinese). doi: 10.37188/CJLCD.2021-0129http://dx.doi.org/10.37188/CJLCD.2021-0129
BABAKHANOVA G, PARSOUZI Z, PALADUGU S, et al. Elastic and viscous properties of the nematic dimer CB7CB [J]. Physical Review E, 2017, 96(6): 062704. doi: 10.1103/physreve.96.062704http://dx.doi.org/10.1103/physreve.96.062704
CUKROV G, MOSADDEGHIAN GOLESTANI Y, XIANG J, et al. Comparative analysis of anisotropic material properties of uniaxial nematics formed by flexible dimers and rod-like monomers [J]. Liquid Crystals, 2017, 44(1): 219-231.
IADLOVSKA O S, MAXWELL G R, BABAKHANOVA G, et al. Tuning selective reflection of light by surface anchoring in cholesteric cells with oblique helicoidal structures [J]. Optics Letters, 2018, 43(8): 1850-1853. doi: 10.1364/ol.43.001850http://dx.doi.org/10.1364/ol.43.001850
MEYER C, LUCKHURST G R, DOZOV I. The temperature dependence of the heliconical tilt angle in the twist-bend nematic phase of the odd dimer CB7CB [J]. Journal of Materials Chemistry C, 2015, 3(2): 318-328. doi: 10.1039/c4tc01927jhttp://dx.doi.org/10.1039/c4tc01927j
IADLOVSKA O S, BABAKHANOVA G, MEHL G H, et al. Temperature dependence of bend elastic constant in oblique helicoidal cholesterics [J]. Physical Review Research, 2020, 2(1): 013248. doi: 10.1103/physrevresearch.2.013248http://dx.doi.org/10.1103/physrevresearch.2.013248
WANG Y, ZHENG Z G, BISOYI H K, et al. Thermally reversible full color selective reflection in a self-organized helical superstructure enabled by a bent-core oligomesogen exhibiting a twist-bend nematic phase [J]. Materials Horizons, 2016, 3(5): 442-446. doi: 10.1039/c6mh00101ghttp://dx.doi.org/10.1039/c6mh00101g
KASIAN N A, LISETSKI L N, GVOZDOVSKYY I A. Twist-bend nematics and heliconical cholesterics: a physico-chemical analysis of phase transitions and related specific properties [J]. Liquid Crystals, 2022, 49(1): 142-152. doi: 10.1080/02678292.2021.1970838http://dx.doi.org/10.1080/02678292.2021.1970838
CHALLA P K, BORSHCH V, PARRI O, et al. Twist-bend nematic liquid crystals in high magnetic fields [J]. Physical Review E, 2014, 89(6): 060501. doi: 10.1103/physreve.89.060501http://dx.doi.org/10.1103/physreve.89.060501
ZOLA R S, RIBEIRO DE ALMEIDA R R, BARBERO G, et al. Behaviour of twist-bend nematic structure under a uniform magnetic field [J]. Molecular Crystals and Liquid Crystals, 2017, 649(1): 71-78. doi: 10.1080/15421406.2017.1303598http://dx.doi.org/10.1080/15421406.2017.1303598
ZAKHLEVNYKH A N, MAKAROV D V, NOVIKOV A A. Cholesteric⁃nematic transitions induced by a shear flow and a magnetic field [J]. Journal of Experimental and Theoretical Physics, 2017, 125(4): 679-690. doi: 10.1134/s1063776117090096http://dx.doi.org/10.1134/s1063776117090096
MAKAROV D V, NOVIKOV A A, ZAKHLEVNYKH A N, et al. Cholesteric⁃nematic transition induced by a rotating magnetic field [J]. Journal of Molecular Liquids, 2018, 263: 375-381. doi: 10.1016/j.molliq.2018.04.139http://dx.doi.org/10.1016/j.molliq.2018.04.139
YUAN C L, HUANG W B, ZHENG Z G, et al. Stimulated transformation of soft helix among helicoidal, heliconical, and their inverse helices [J]. Science Advances, 2019, 5(10): eaax9501. doi: 10.1126/sciadv.aax9501http://dx.doi.org/10.1126/sciadv.aax9501
NAVA G, CICIULLA F, IADLOVSKA O S, et al. Pitch tuning induced by optical torque in heliconical cholesteric liquid crystals [J]. Physical Review Research, 2019, 1(3): 033215. doi: 10.1103/physrevresearch.1.033215http://dx.doi.org/10.1103/physrevresearch.1.033215
邹呈,高延子,于美娜,等.液晶/高分子复合材料及其在反式电控调光膜中的应用研究进展[J].应用化学,2021,38(10):1213-1225. doi: 10.19894/j.issn.1000-0518.210373http://dx.doi.org/10.19894/j.issn.1000-0518.210373
ZOU C, GAO Y Z, YU M N, et al. Recent advances in liquid crystal/polymer composites and their applications in reverse⁃mode electrically switchable light⁃transmittance controllable films [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1213-1225. (in Chinese). doi: 10.19894/j.issn.1000-0518.210373http://dx.doi.org/10.19894/j.issn.1000-0518.210373
张洋,杨卫平,赵威,等.聚合物稳定液晶材料研究进展[J].功能高分子学报,2021,34(1):49-65. doi: 10.14133/j.cnki.1008-9357.20200713001http://dx.doi.org/10.14133/j.cnki.1008-9357.20200713001
ZHANG Y, YANG W P, ZHAO W, et al. Research advance in polymer stabilized liquid crystals [J]. Journal of Functional Polymers, 2021, 34(1): 49-65. (in Chinese). doi: 10.14133/j.cnki.1008-9357.20200713001http://dx.doi.org/10.14133/j.cnki.1008-9357.20200713001
HIKMET R A M, LUB J. Anisotropic networks and gels obtained by photopolymerisation in the liquid crystalline state: synthesis and applications [J]. Progress in Polymer Science, 1996, 21(6): 1165-1209. doi: 10.1016/s0079-6700(96)00017-2http://dx.doi.org/10.1016/s0079-6700(96)00017-2
HIKMET R A M. Anisotropic gels and plasticized networks formed by liquid crystal molecules [J]. Liquid Crystals, 1991, 9(3): 405-416. doi: 10.1080/02678299108045574http://dx.doi.org/10.1080/02678299108045574
RUMI M, BUNNING T J, WHITE T J. Polymer stabilization of cholesteric liquid crystals in the oblique helicoidal state [J]. Soft Matter, 2018, 14(44): 8883-8894. doi: 10.1039/c8sm01278dhttp://dx.doi.org/10.1039/c8sm01278d
JOSHI V, PATERSON D A, STOREY J M D, et al. Augmenting Bragg reflection with polymer-sustained conical helix [J]. Scientific Reports, 2019, 9(1): 5468. doi: 10.1038/s41598-019-41836-4http://dx.doi.org/10.1038/s41598-019-41836-4
杨梦园,杨潇,封伟,等.近红外光响应液晶纳米智能材料[J].液晶与显示,2020,35(7):631-644. doi: 10.37188/YJYXS20203507.0631http://dx.doi.org/10.37188/YJYXS20203507.0631
YANG M Y, YANG X, FENG W, et al. Near-infrared light-responsive intelligent liquid crystal nanocomposites [J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 631-644. (in Chinese). doi: 10.37188/YJYXS20203507.0631http://dx.doi.org/10.37188/YJYXS20203507.0631
HAGEN N A, KUDENOV M W. Review of snapshot spectral imaging technologies [J]. Optical Engineering, 2013, 52(9): 090901. doi: 10.1117/1.oe.52.9.090901http://dx.doi.org/10.1117/1.oe.52.9.090901
GAO L, SMITH R T. Optical hyperspectral imaging in microscopy and spectroscopy-a review of data acquisition [J]. Journal of Biophotonics, 2015, 8(6): 441-456. doi: 10.1002/jbio.201400051http://dx.doi.org/10.1002/jbio.201400051
WILSON R H, NADEAU K P, JAWORSKI F B, et al. Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization [J]. Journal of Biomedical Optics, 2015, 20(3): 030901. doi: 10.1117/1.jbo.20.3.030901http://dx.doi.org/10.1117/1.jbo.20.3.030901
YOKOYA N, GROHNFELDT C, CHANUSSOT J. Hyperspectral and multispectral data fusion: a comparative review of the recent literature [J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(2): 29-56. doi: 10.1109/mgrs.2016.2637824http://dx.doi.org/10.1109/mgrs.2016.2637824
0
Views
221
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution