

浏览全部资源
扫码关注微信
1.深圳技术大学 中德智能制造学院, 深圳 518118
2.广东省先进光学精密制造重点实验室, 深圳 518118
3.广东省微纳光机电工程重点实验室, 深圳 518118
Received:05 July 2021,
Revised:03 August 2021,
Published:2021-10
移动端阅览
Liang HU, Xue-juan HU, Zhen-hong HUANG, et al. Mura defect detection based on effective background reconstruction and contrast enhancement[J]. Chinese journal of liquid crystals and displays, 2021, 36(10): 1395-1402.
Liang HU, Xue-juan HU, Zhen-hong HUANG, et al. Mura defect detection based on effective background reconstruction and contrast enhancement[J]. Chinese journal of liquid crystals and displays, 2021, 36(10): 1395-1402. DOI: 10.37188/CJLCD.2021-0177.
提出一种基于有效背景重构和对比度增强的Mura缺陷检测方法。首先,提出了一种新的基于缺陷区域预剔除的背景重构方法,能够有效地重构背景图像,消除图像亮度不均等干扰。然后,引入了基于Otsu的双γ分段指数变换法对差分图像进行增强处理,能够有效解决背景残余问题且极大增强了Mura区域的对比度和轮廓度。最后,直接运用动态阈值分割方法,可以快速准确地将Mura缺陷分离出来。实验结果表明,与传统的多项式曲面拟合方法以及离散余弦变换法相比,本文方法对各种类型的Mura缺陷检测效果稳定,且检出率和无误报率均达到了97%以上。
A Mura defect detection method based on effective background reconstruction and contrast enhancement is proposed. Firstly
a new background reconstruction method based on defect region pre-elimination is proposed
which can effectively reconstruct the background image and eliminate the interference of uneven brightness. Then
the dual-γ piecewise exponential transform method based on Otsu is introduced to enhance the difference image
which can effectively solve the problem of background residual and better enhance the contrast and contour of Mura region. Finally
the Mura defects can be separated quickly and accurately by using the dynamic threshold segmentation method. The experimental results show that
compared with the traditional polynomial surface fitting method and the discrete cosine transform method
the detection effect of this method for various types of Mura defects is stable
and the detection rate and no false alarm rate are more than 97%.
高 如新 , 任 晓朵 , 吴 献 , 等 . 基于图像处理的手机屏幕缺陷检测系统研究 . 测控技术 , 2017 . 36 ( 4 ): 26 - 30 . DOI: 10.3969/j.issn.1000-8829.2017.04.007 http://doi.org/10.3969/j.issn.1000-8829.2017.04.007 .
R X GAO , X D REN , X WU , 等 . Research on mobile phone screen defect detection system based on image processing . Measurement & Control Technology , 2017 . 36 ( 4 ): 26 - 30 . DOI: 10.3969/j.issn.1000-8829.2017.04.007 http://doi.org/10.3969/j.issn.1000-8829.2017.04.007 .
Y G CEN , R Z ZHAO , L H CEN , 等 . Defect inspection for TFT-LCD images based on the low-rank matrix reconstruction . Neurocomputing , 2015 . 149 1206 - 1215 . DOI: 10.1016/j.neucom.2014.09.007 http://doi.org/10.1016/j.neucom.2014.09.007 .
陈 凌海 , 姚 剑敏 , 郭 太良 . 基于改进Chan-Vese模型的液晶显示屏Mura缺陷分割 . 液晶与显示 , 2016 . 31 ( 6 ): 613 - 620 . DOI: 10.3788/YJYXS20163106.0613 http://doi.org/10.3788/YJYXS20163106.0613 .
L H CHEN , J M YAO , T L GUO . LCD Mura defectimage segmentation based on improved Chan-Vese model . Chinese Journal of Liquid Crystals and Displays , 2016 . 31 ( 6 ): 613 - 620 . DOI: 10.3788/YJYXS20163106.0613 http://doi.org/10.3788/YJYXS20163106.0613 .
C S CHEN , C M WANG , C C TSENG . An efficient detection algorithm based on anisotropic diffusion for low-contrast defect . The International Journal of Advanced Manufacturing Technology , 2018 . 94 ( 9/12 ): 4427 - 4449 . http://www.onacademic.com/detail/journal_1000040100067210_c872.html http://www.onacademic.com/detail/journal_1000040100067210_c872.html .
廖 苗 , 刘 毅志 , 欧阳 军林 , 等 . 基于自适应局部增强的手机TFT-LCD屏Mura缺陷自动检测 . 液晶与显示 , 2018 . 33 ( 6 ): 475 - 482 . DOI: 10.3788/YJYXS20183306.0475 http://doi.org/10.3788/YJYXS20183306.0475 .
M LIAO , Y Z LIU , J L OUYANG , 等 . Automatic detection of Mura defect in TFT-LCD mobile screen based on adaptive local enhancement . Chinese Journal of Liquid Crystals and Displays , 2018 . 33 ( 6 ): 475 - 482 . DOI: 10.3788/YJYXS20183306.0475 http://doi.org/10.3788/YJYXS20183306.0475 .
YUN J W, GU H, KIM D H, et al . Automatic Mura inspection using the principal component analysis for the TFT-LCD panel[C]//2014 IEEE International Conference on Consumer Electronics-Taiwan . Taipei, China: IEEE, 2014: 109-110.
TSAI D M, TSENG Y H, CHIU W Y. Surface defect detection in low-contrast images using basis image representation[C]//2015 14 th IAPR International Conference on Machine Vision Applications ( MVA ). Tokyo: IEEE, 2015: 186-189.
WANG X, DONG R, LI B. TFT-LCD Mura defect detection based on ICA and multi-channels fusion[C]//2016 3 rd International Conference on Information Science and Control Engineering ( ICISCE ). Beijing: IEEE, 2016: 687-691.
L C CHEN , C C KUO . Automatic TFT-LCD Mura defect inspection using discrete cosine transform-based background filtering and 'just noticeable difference' quantification strategies . Measurement Science and Technology , 2007 . 19 ( 1 ): 015507 http://adsabs.harvard.edu/abs/2008MeScT..19a5507C http://adsabs.harvard.edu/abs/2008MeScT..19a5507C .
S Q JIN , C JI , C C YAN , 等 . TFT-LCD Mura defect detection using DCT and the dual-γ piecewise exponential transform . Precision Engineering , 2018 . 54 371 - 378 . DOI: 10.1016/j.precisioneng.2018.07.006 http://doi.org/10.1016/j.precisioneng.2018.07.006 .
J S PARK , S H LEE . Automatic Mura detection for display film using mask filtering in wavelet transform . IEICE Transactions on Information and Systems , 2015 . E98-D ( 3 ): 737 - 740 . DOI: 10.1587/transinf.2014EDL8140 http://doi.org/10.1587/transinf.2014EDL8140 .
S K S FAN , YC CHUANG . Automatic detection of Mura defect in TFT-LCD based on regression diagnostics . Pattern Recognition Letters , 2010 . 31 ( 15 ): 2397 - 2404 . DOI: 10.1016/j.patrec.2010.07.013 http://doi.org/10.1016/j.patrec.2010.07.013 .
MA Z Q, GONG J. An automatic detection method of Mura defects for liquid crystal display[C]//2019 Chinese Control Conference ( CCC ). Guangzhou: IEEE, 2019: 7722-7727.
李 坤 , 李 辉 , 刘 云杰 , 等 . LCD Mura缺陷的B样条曲面拟合背景抑制 . 光电工程 , 2014 . 41 ( 2 ): 33 - 39 . https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201402007.htm https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201402007.htm .
K LI , H LI , Y J LIU , 等 . Background suppression of LCD Mura defect using b-spline surface fitting . Opto-Electronic Engineering , 2014 . 41 ( 2 ): 33 - 39 . https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201402007.htm https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201402007.htm .
KIM Y G, PARK T H. Mura defect detection on compact camera module (CCM) using metric learning[C]//2020 IEEE 16 th International Conference on Automation Science and Engineering ( CASE ). Hong Kong, China: IEEE, 2020: 1263-1268.
J LEE . Region-based machine learning for OLED Mura defects detection . SID Symposium Digest of Technical Papers , 2021 . 52 ( 1 ): 200 - 203 . DOI: 10.1002/sdtp.14646 http://doi.org/10.1002/sdtp.14646 .
0
Views
288
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621