

浏览全部资源
扫码关注微信
1.沈阳理工大学 自动化与电气工程学院, 辽宁 沈阳 110159
2.辽宁工程技术大学 电子与信息工程学院, 辽宁 葫芦岛 125105
Received:14 January 2021,
Revised:06 February 2021,
Published:2021-09
移动端阅览
Sen LIN, Yuan WANG. Finger-knuckle-print recognition based on fused pixels Gabor-Tetrolet[J]. Chinese journal of liquid crystals and displays, 2021, 36(9): 1314-1322.
Sen LIN, Yuan WANG. Finger-knuckle-print recognition based on fused pixels Gabor-Tetrolet[J]. Chinese journal of liquid crystals and displays, 2021, 36(9): 1314-1322. DOI: 10.37188/CJLCD.2021-0015.
为了提取指关节纹图像的纹理特征并进一步提高其识别精度,提出一种基于改进Gabor小波和Tetrolet的指关节纹识别方法。首先,利用某点邻域像素的融合幅值特征代表该点的Gabor幅值特征,增强每个像素点之间的局部关联性;其次,将滤波后的指关节纹特征图像经过具有高稀疏性的Tetrolet变换以获取图像的最优稀疏表示;最后,利用带限相位相关(Band-Limited Phase-Only Correlation,BLPOC)算法提取指关节纹图像的互功率谱进行匹配。在PolyU-FK、PolyU-CFK、IITD图库得到的识别准确率分别为99.1300%,98.8324%,98.7937%,最低等误率为1.4601%,最短识别时间为0.043 2 s。本文方法能够提高识别系统的性能,具有可行性和有效性。
In order to extract the texture features of finger-knuckle-print image and improve its recognition accuracy
a new method of finger-knuckle-print recognition based on improved Gabor wavelet and tetrolet is proposed. Firstly
the fused amplitude features of the neighboring pixels are used to represent the Gabor amplitude features of the point to enhance the local correlation between each pixel. Secondly
the filtered fingerprint feature image is transformed by tetrolet with high sparsity to obtain the optimal sparse representation of the image. Finally
band limited phase-only correlation is used to extract the cross power spectra of finger-knuckle-print image for matching. The correct recognition rate of PolyU-FK
PolyU-CFK and IITD database are 99.1300%
98.8324% and 98.7937%
respectively. The lowest equal error rate is 1.4601%
and the shortest recognition time is 0.043 2 s. The method proposed in this paper can improve the performance of the recognition system
and is feasible and effective.
陈 斌 , 东 一舟 , 朱 晋宁 . 非控场景下主成分稀疏表示与低秩分解的人脸识别 . 液晶与显示 , 2019 . 34 ( 8 ): 816 - 824 . DOI: 10.3788/YJYXS20193408.0816 http://doi.org/10.3788/YJYXS20193408.0816 .
B CHEN , Y Z DONG , J N ZHU . Face recognition based on sparse representation of principal components and low rank decomposition in uncontrolled scenes . Chinese Journal of Liquid Crystals and Displays , 2019 . 34 ( 8 ): 816 - 824 . DOI: 10.3788/YJYXS20193408.0816 http://doi.org/10.3788/YJYXS20193408.0816 .
明 悦 , 王 绍颖 , 范 春晓 , 等 . 对齐特征表示的跨模态人脸识别 . 光学精密工程 , 2020 . 28 ( 10 ): 2311 - 2322 . DOI: 10.37188/OPE.20202810.2311 http://doi.org/10.37188/OPE.20202810.2311 .
Y MING , S Y WANG , C X FAN , 等 . Exploring aligned latent representations for cross-domain face recognition . Optics and Precision Engineering , 2020 . 28 ( 10 ): 2311 - 2322 . DOI: 10.37188/OPE.20202810.2311 http://doi.org/10.37188/OPE.20202810.2311 .
潘 仙张 , 张 石清 , 郭 文平 . 多模深度卷积神经网络应用于视频表情识别 . 光学精密工程 , 2019 . 27 ( 4 ): 963 - 970 . DOI: 10.3788/OPE.20192704.0963 http://doi.org/10.3788/OPE.20192704.0963 .
X Z PAN , S Q ZHANG , W P GUO . Video-based facial expression recognition using multimodal deep convolutional neural networks . Optics and Precision Engineering , 2019 . 27 ( 4 ): 963 - 970 . DOI: 10.3788/OPE.20192704.0963 http://doi.org/10.3788/OPE.20192704.0963 .
王 曙光 . 指纹识别技术综述 . 信息安全研究 , 2016 . 2 ( 4 ): 343 - 355 . https://www.cnki.com.cn/Article/CJFDTOTAL-XAQY201604013.htm https://www.cnki.com.cn/Article/CJFDTOTAL-XAQY201604013.htm .
S G WANG . A survey of fingerprint recognition technology . Journal of Information Security Research , 2016 . 2 ( 4 ): 343 - 355 . https://www.cnki.com.cn/Article/CJFDTOTAL-XAQY201604013.htm https://www.cnki.com.cn/Article/CJFDTOTAL-XAQY201604013.htm .
钟 德星 , 朱 劲松 , 杜 学峰 . 掌纹识别研究进展综述 . 模式识别与人工智能 , 2019 . 32 ( 5 ): 436 - 445 . DOI: 10.16451/j.cnki.issn1003-6059.201905006 http://doi.org/10.16451/j.cnki.issn1003-6059.201905006 .
D X ZHONG , J S ZHU , X F DU . Progress of palmprint recognition: a review . Pattern Recognition and Artificial Intelligence , 2019 . 32 ( 5 ): 436 - 445 . DOI: 10.16451/j.cnki.issn1003-6059.201905006 http://doi.org/10.16451/j.cnki.issn1003-6059.201905006 .
李 伟剑 , 金 建 , 邸 思 . 基于FAST特征提取的指静脉识别 . 光学精密工程 , 2020 . 28 ( 2 ): 507 - 514 . DOI: 10.3788/OPE.20202802.0507 http://doi.org/10.3788/OPE.20202802.0507 .
W J LI , J JIN , S DI . Finger vein recognition algorithm based on FAST feature extraction . Optics and Precision Engineering , 2020 . 28 ( 2 ): 507 - 514 . DOI: 10.3788/OPE.20202802.0507 http://doi.org/10.3788/OPE.20202802.0507 .
陆 劲挺 , 贾 伟 , 叶 慧 , 等 . 指节纹识别综述 . 模式识别与人工智能 , 2017 . 30 ( 7 ): 622 - 636 . DOI: 10.16451/j.cnki.issn1003-6059.201707005 http://doi.org/10.16451/j.cnki.issn1003-6059.201707005 .
J T LU , W JIA , H YE , 等 . Finger-knuckle-print recognition: a preliminary review . Pattern Recognition and Artificial Intelligence , 2017 . 30 ( 7 ): 622 - 636 . DOI: 10.16451/j.cnki.issn1003-6059.201707005 http://doi.org/10.16451/j.cnki.issn1003-6059.201707005 .
A KUMAR , B C WANG . Recovering and matching minutiae patterns from finger knuckle images . Pattern Recognition Letters , 2015 . 68 361 - 367 . DOI: 10.1016/j.patrec.2015.08.013 http://doi.org/10.1016/j.patrec.2015.08.013 .
JING X Y, LI W Q, LAN C, et al . Orthogonal complex locality preserving projections based on image space metric for finger-knuckle-print recognition[C]// Proceedings of 2011 International Conference on Hand-based Biometrics . Hong Kong, China: IEEE, 2011.
R CHLAOUA , A MERAOUMIA , K E AIADI , 等 . Deep learning for finger-knuckle-print identification system based on PCANet and SVM classifier . Evolving Systems , 2019 . 10 ( 2 ): 261 - 272 . DOI: 10.1007/s12530-018-9227-y http://doi.org/10.1007/s12530-018-9227-y .
Z S SHARIATMADAR , K FAEZ . Finger-knuckle-print recognition performance improvement via multi-instance fusion at the score level . Optik , 2014 . 125 ( 3 ): 908 - 910 . DOI: 10.1016/j.ijleo.2013.04.134 http://doi.org/10.1016/j.ijleo.2013.04.134 .
范 国娟 , 范 国卿 , 柳 絮青 . HOGG: 基于Gabor变换与HOG特征的人体检测 . 微型机与应用 , 2016 . 35 ( 21 ): 14 - 15, 19 . DOI: 10.19358/j.issn.1674-7720.2016.21.004 http://doi.org/10.19358/j.issn.1674-7720.2016.21.004 .
G J FAN , G Q FAN , X Q LIU . HOGG: Gabor and HOG-based human detection . Microcomputer & Its Applications , 2016 . 35 ( 21 ): 14 - 15, 19 . DOI: 10.19358/j.issn.1674-7720.2016.21.004 http://doi.org/10.19358/j.issn.1674-7720.2016.21.004 .
JEONG K J, KIM D J. Face recognition by weighted multi-resolution uniform local Gabor binary patterns[C]// Proceedings of the 2012 12 th International Conference on Control, Automation and Systems . Jeju, Korea (South): IEEE, 2012.
J KROMMWEH . Tetrolet transform: a new adaptive Haar wavelet algorithm for sparse image representation . Journal of Visual Communication and Image Representation , 2010 . 21 ( 4 ): 364 - 374 . 10.1016/j.jvcir.2010.02.011 10.1016/j.jvcir.2010.02.011 .
M S M ASAARI , S A SUANDI , B A ROSDI . Fusion of band limited phase only correlation and width centroid contour distance for finger based biometrics . Expert Systems with Applications , 2014 . 41 ( 7 ): 3367 - 3382 . 10.1016/j.eswa.2013.11.033 10.1016/j.eswa.2013.11.033 .
L ZHANG , L ZHANG , D ZHANG , 等 . Online finger-knuckle-print verification for personal authentication . Pattern Recognition , 2010 . 43 ( 7 ): 2560 - 2571 . 10.1016/j.patcog.2010.01.020 10.1016/j.patcog.2010.01.020 .
A KUMAR . Importance of being unique from finger dorsal patterns: exploring minor finger knuckle patterns in verifying human identities . IEEE Transactions on Information Forensics and Security , 2014 . 9 ( 8 ): 1288 - 1298 . 10.1109/TIFS.2014.2328869 10.1109/TIFS.2014.2328869 .
A KUMAR , C RAVIKANTH . Personal authentication using finger knuckle surface . IEEE Transactions on Information Forensics and Security , 2009 . 4 ( 1 ): 98 - 110 . 10.1109/TIFS.2008.2011089 10.1109/TIFS.2008.2011089 .
0
Views
244
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621