Image dehazing algorithm based on multi-scale concat convolutional neural network
Image Processing|更新时间:2021-09-30
|
Image dehazing algorithm based on multi-scale concat convolutional neural network
Chinese Journal of Liquid Crystals and DisplaysVol. 36, Issue 10, Pages: 1420-1429(2021)
作者机构:
1.南京信息工程大学 电子与信息工程学院, 江苏 南京 210044
2.江苏省气象探测与信息处理重点实验室, 江苏 南京 210044
作者简介:
基金信息:
National Natural Science Foundation of China(61704143);National Natural Science Foundation of China(62005232);Natural Science Foundation of Fujian Province(2018J01566);Xiamen Youth Innovation Fund(3502Z20206074)
Dan QIAO, Chuang ZHANG, Chen-yu ZHU. Image dehazing algorithm based on multi-scale concat convolutional neural network[J]. Chinese journal of liquid crystals and displays, 2021, 36(10): 1420-1429.
DOI:
Dan QIAO, Chuang ZHANG, Chen-yu ZHU. Image dehazing algorithm based on multi-scale concat convolutional neural network[J]. Chinese journal of liquid crystals and displays, 2021, 36(10): 1420-1429. DOI: 10.37188/CJLCD.2020-0347.
Image dehazing algorithm based on multi-scale concat convolutional neural network
In order to solve the problem of dark color and incomplete defogging after image defogging
an image defogging algorithm based on multi-scale concat convolutional neural network is proposed in this paper. Taking the foggy image as the input
the shallow layer information of the image is extracted from the single scale convolution layer through the preprocessing module
and then the multi-scale mapping module is designed to realize the depth feature learning and the fusion of the deep and shallow layer features. The deconvolution module is used to restore the image size
and the coarse transmittance map corresponding to the foggy image is obtained through the convolution operation. Finally
the haze free image is restored according to the atmospheric scattering model. The experimental results show that the proposed method is superior to other algorithms in both synthetic and natural foggy images
and the peak signal-to-noise ratio (PSNR) and structure similarity (SSIM) can reach 29.238 and 0.950
respectively. The proposed algorithm can effectively avoid the dark color and distortion of the image
improve the image defogging performance and show good visual effect.
关键词
Keywords
references
R Q MA , S J ZHANG . An improved color image defogging algorithm using dark channel model and enhancing saturation . Optik , 2019 . 180 997 - 1000 . DOI: 10.1016/j.ijleo.2018.12.020 http://doi.org/10.1016/j.ijleo.2018.12.020 .
W G WANG , B H WANG , J J ZHANG , 等 . Image haze removal algorithm based on histogram specification . Computer Technology and Development , 2014 . 24 ( 9 ): 241 - 244 . https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201409057.htm https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201409057.htm .
E H LAND , J J MCCANN . Lightness and retinex theory . Journal of the Optical Society of America , 1971 . 61 ( 1 ): 1 - 11 . DOI: 10.1364/JOSA.61.000001 http://doi.org/10.1364/JOSA.61.000001 .
J XIAO , S P SONG , L J DING . Research on the fast algorithm of spatial homomorphic filtering . Journal of Image and Graphics , 2008 . 13 ( 12 ): 2302 - 2306 . DOI: 10.11834/jig.20081209 http://doi.org/10.11834/jig.20081209 .
A CANTOR . Optics of the atmosphere-scattering by molecules and particles . IEEE Journal of Quantum Electronics , 1978 . 14 ( 9 ): 698 - 699 .
TAN R T. Visibility in bad weather from a single image[C]// IEEE Conference on Computer Vision and Pattern Recognition . Anchorage, AK, USA: IEEE, 2008: 1-8.
R FATTAL . Single image dehazing . ACM Transactions on Graphics , 2008 . 27 ( 3 ): 1 - 9 .
K M HE , J SUN , X O TANG . Single image haze removal usingdarkchannel prior . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2011 . 33 ( 12 ): 2341 - 2353 . DOI: 10.1109/TPAMI.2010.168 http://doi.org/10.1109/TPAMI.2010.168 .
K M HE , J SUN , X O TANG . Guided image filtering . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2013 . 35 ( 6 ): 1397 - 1409 . DOI: 10.1109/TPAMI.2012.213 http://doi.org/10.1109/TPAMI.2012.213 .
M S SHAO . Image dehazing based on improved dark channel algorithm . Chinese Journal of Liquid Crystals and Displays , 2019 . 34 ( 7 ): 690 - 697 . http://cjlcd.lightpublishing.cn/thesisDetails#10.3788/YJYXS20183308.0690&graphicAbstract=0 http://cjlcd.lightpublishing.cn/thesisDetails#10.3788/YJYXS20183308.0690&graphicAbstract=0 .
Z ZHANG , Q LI , Z H XU , 等 . Color-line and dark channel based dehazing for remote sensing images . Optics and Precision Engineering , 2019 . 27 ( 1 ): 181 - 190 . https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201901050.htm https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201901050.htm .
MENG G F, WANG Y, DUAN J Y, et al . Efficient image dehazing with boundary constraint and contextual regulation[C]//2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia: IEEE, 2013: 617-624.
B L CAI , X M XU , K JIA , 等 . DehazeNet: an end-to-end system for single image haze removal . IEEE Transaction on Image Processing , 2016 . 25 ( 11 ): 5187 - 5198 . DOI: 10.1109/TIP.2016.2598681 http://doi.org/10.1109/TIP.2016.2598681 .
LI B Y, PENG X L, WANG Z Y, et al . AOD-Net: All-in-One dehazing network[C]// International Conference on Computer Vision . Venice, Italy: IEEE, 2017: 4770-4778.
REN W Q, LIU S, ZHANG H, et al . Single image dehazing via multi-scale convolutional neural networks[C]// European Conference on Computer Vision . Amsterdam, The Netherlands: Springer, 2016: 154-169.
Q J CHEN , X ZHANG , Y Z CHAI . Image defogging algorithms based on multiscale convolution neural network . Chinese Journal of Liquid Crystals and Displays , 2019 . 34 ( 2 ): 220 - 227 . http://cjlcd.lightpublishing.cn/thesisDetails#10.3788/YJYXS20193402.0220&graphicAbstract=0 http://cjlcd.lightpublishing.cn/thesisDetails#10.3788/YJYXS20193402.0220&graphicAbstract=0 .
S G NARASIMHAN , S K NAYAR . Contrast restoration of weather degraded images . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2003 . 25 ( 6 ): 713 - 724 . DOI: 10.1109/TPAMI.2003.1201821 http://doi.org/10.1109/TPAMI.2003.1201821 .
S G NARASIMHAN , S K NAYAR . Vision and the atmosphere . International Journal of Computer Vision , 2002 . 48 ( 3 ): 233 - 254 . DOI: 10.1023/A:1016328200723 http://doi.org/10.1023/A:1016328200723 .
B Y LI , W Q REN , D P FU , 等 . Benchmarking single image dehazing and beyond . IEEE Transactions on Image Processing , 2019 . 28 ( 1 ): 492 - 505 . DOI: 10.1109/TIP.2018.2867951 http://doi.org/10.1109/TIP.2018.2867951 .