

浏览全部资源
扫码关注微信
南京邮电大学 有机电子与信息显示国家重点实验室培育基地, 江苏省生物传感材料与技术重点实验室, 信息材料与纳米技术研究院, 江苏先进生物与化学制造协同创新中心, 江苏 南京 210023
Received:09 October 2020,
Accepted:05 November 2020,
Published:2021-01
移动端阅览
Fei PAN, Yi-zhong DAI, Ming-guang LI, et al. Advances in alternating current-driven light-emitting devices[J]. Chinese journal of liquid crystals and displays, 2021, 36(1): 21-38.
Fei PAN, Yi-zhong DAI, Ming-guang LI, et al. Advances in alternating current-driven light-emitting devices[J]. Chinese journal of liquid crystals and displays, 2021, 36(1): 21-38. DOI: 10.37188/CJLCD.2020-0265.
随着光电信息产业的高速发展,发光二极管(LEDs)作为固态照明和显示设备的核心单元,受到了研究人员的广泛关注。根据驱动方式的不同,一般将LEDs分为恒压或直流驱动的LEDs(DC-LEDs)以及交流驱动的LEDs(AC-LEDs)。与DC-LEDs相比,AC-LEDs不仅可以避免载流子大量累积所导致的亮度和效率降低,并且无需变压与整流系统即可接入交流电系统中,大幅简化了器件集成工艺,因此AC-LEDs展现出更好的应用前景。基于此,本文介绍了AC-LEDs的发光机制,总结了包括双绝缘、单绝缘、双注入、串联和平行结构在内的几种常见结构类型;综述了各类AC-LEDs的研究进展,探讨了各种结构对器件性能的影响,发现器件内部载流子的传输平衡和绝缘层的高介电性质是实现AC-LEDs高性能的关键因素;本文最后探讨了AC-LEDs所面临的机遇与挑战。
With the rapid development of the optoelectronic information industry
light-emitting diodes (LEDs) as the core unit of solid-state lighting and display equipment
have been widely concerned by researchers. According to the different driving modes
LEDs can be generally divided into constant voltage or direct current driven LEDs (DC-LEDs) and alternating current driven LEDs (AC-LEDs). Compared to DC-LEDs
AC-LEDs can effectively avoid the charge accumulation for the improved device efficiency and operational lifetime. In addition
AC-LEDs can be readily connected to AC power systems without voltage transformation and rectification systems
which greatly simplifies the device integration process with better practical application prospects. This review firstly introduces the light-emitting mechanism of AC-LEDs and summarizes several AC-LED device structures including double-insulation
single-insulation
double-injection
tandem and parallel structures. Then
the recent advances of various AC-LEDs are presented and the influences of various factors on device performance are discussed. It is found that the balanced carrier transport and the high dielectric properties of insulator are two key factors in achieving high-performance AC-LEDs. Finally
the opportunities and challenges for the future development of AC-LEDs are discussed.
CHOU H H, CHEN Y H, HSU H P, et al . Synthesis of diimidazolylstilbenes as n-type blue fluorophores: alternative dopant materials for highly efficient electroluminescent devices[J] . Advanced Materials , 2012, 24(43): 5867-5871.
WU S F, LI S H, WANG Y K, et al . White organic LED with a luminous efficacy exceeding 100 lm·W -1 without light out-coupling enhancement techniques[J]. Advanced Functional Materials , 2017, 27(31): 1701314.
LUO D X, CHEN Q Z, GAO Y, et al . Extremely simplified, high-performance, and doping-free white organic light-emitting diodes based on a single thermally activated delayed fluorescent emitter[J]. ACS Energy Letters , 2018, 3(7): 1531-1538.
CHAPRAN M, PANDER P, VASYLIEVA M, et al . Realizing 20% external quantum efficiency in electroluminescence with efficient thermally activated delayed fluorescence from an exciplex[J]. ACS Applied Materials & Interfaces , 2019, 11(14): 13460-13471.
赵紫玉, 张方辉, 赵会, 等.具有PEDOT:PSS/HAT-CN双空穴注入层的高效柔性OLED器件[J].液晶与显示, 2020, 35(2):99-107.
ZHAO Z Y, ZHANG F H, ZHAO H, et al . High-efficiency flexible OLED devices with PEDOT:PSS/HAT-CN double hole injection layer[J]. Chinese Journal of Liquid Crystals and Displays , 2020, 35(2): 99-107. (in Chinese)
刘伟强, 崔荣朕, 武瑞霞, 等.蓝色延迟荧光材料及器件的研究进展[J].应用化学, 2019, 36(1):1-9.
LIUW Q, CUI R Z, WU R X, et al . Recent progress on blue delayed fluorescent materials and devices[J]. Chinese Journal of Applied Chemistry , 2019, 36(1): 1-9. (in Chinese)
LI X Y, ZHAO Y B, FAN F J, et al . Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination[J]. Nature Photonics , 2018, 12(3): 159-164.
KIM Y H, WOLF C, KIM Y T, et al . Highly efficient light-emitting diodes of colloidal metal-halide perovskite nanocrystals beyond quantum size[J]. ACS Nano , 2017, 11(7): 6586-6593.
ZHANG Z X, YE Y X, PU C D, et al . High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots[J]. Advanced Materials , 2018, 30(28): 1801387.
曹丽娟, 江从彪, 罗宇, 等.低启亮电压全溶液加工量子点发光器件[J].液晶与显示, 2020, 35(8):785-794.
CAO L J, JIANG C B, LUO Y, et al . All-solution processed quantum dot light-emitting diodes with low turn-on voltage[J]. Chinese Journal of Liquid Crystals and Displays , 2020, 35(8): 785-794. (in Chinese)
黄国斌, 骆登峰, 张茂升.多色高发光效率CsPb X 3 ( X =Cl, Br, I)钙钛矿量子点的制备及其在发光二极管中的应用[J].应用化学, 2019, 36(8):932-938.
HUANGG B, LUO D F, ZHANG M S. Preparation of CsPb X 3 ( X =Cl, Br, I) Perovskite quantum dots with multicolor and high luminescence efficiency and its application in light emitting diode devices[J]. Chinese Journal of Applied Chemistry , 2019, 36(8): 932-938. (in Chinese)
ENGMANN S, BARITO A J, BITTLE E G, et al . Higher order effects in organic LEDs with sub-bandgap turn-on[J]. Nature Communications , 2019, 10(1): 227.
SALEHI A, DONG C, SHIN D H, et al . Realization of high-efficiency fluorescent organic light-emitting diodes with low driving voltage[J]. Nature Communications , 2019, 10(1): 2305.
AHMAD V, SOBUS J, GREENBERG M, et al . Charge and exciton dynamics of OLEDs under high voltage nanosecond pulse: towards injection lasing[J]. Nature Communications , 2020, 11(1): 4310.
PERUMAL A, FRÖBEL M, GORANTLA S, et al . Novel approach for alternating current (AC)-driven organic light-emitting devices[J]. Advanced Functional Materials , 2012, 22(1): 210-217.
FRÖBEL M, PERUMAL A, SCHWAB T, et al . Enhancing the efficiency of alternating current driven organic light-emitting devices by optimizing the operation frequency[J]. Organic Electronics , 2013, 14(3): 809-813.
AN D, LIU H L, WANG S R, et al . Modification of ITO anodes with self-assembled monolayers for enhancing hole injection in OLEDs[J]. Applied Physics Letters , 2019, 114(15): 153301.
LIANG G J, HU H B, LIAO L, et al . Highly flexible and bright electroluminescent devices based on Ag nanowire electrodes and top-emission structure[J]. Advanced Electronic Materials , 2017, 3(3): 1600535.
ZHAO Y B, CHEN R, GAO Y, et al . AC-driven, color- and brightness-tunable organic light-emitting diodes constructed from an electron only device[J]. Organic Electronics , 2013, 14(12): 3195-3200.
WANG L, XIAO L, GU H S, et al . Advances in alternating current electroluminescent devices[J]. Advanced Optical Materials , 2019, 7(7): 1801154.
XU F, ZHU Y. Highly conductive and stretchable silver nanowire conductors[J]. Advanced Materials , 2012, 24(37): 5117-5122.
YANG C H, CHEN B H, ZHOU J X, et al . Electroluminescence of giant stretchability[J]. Advanced Materials , 2016, 28(22): 4480-4484.
WANG J X, YAN C Y, CHEE K J, et al . Highly stretchable and self-deformable alternating current electroluminescent devices[J]. Advanced Materials , 2015, 27(18): 2876-2882.
JUN S, KIM Y, JU B K, et al . Extremely flexible, transparent, and strain-sensitive electroluminescent device based on ZnS: Cu-polyvinyl butyral composite and silver nanowires[J]. Applied Surface Science , 2018, 429: 144-150.
XU X L, CHEN X H, HOU Y B, et al . Blue electroluminescence from tris-(8-hydroxyquinoline) aluminum thin film[J]. Chemical Physics Letters , 2000, 325(4): 420-424.
PAN Y F, XIA Y D, ZHANG H J, et al . Recent advances in alternating current-driven organic light-emitting devices[J]. Advanced Materials , 2017, 29(44): 1701441.
LEE S B, FUJITA K, TSUTSUI T. Emission mechanism of double-insulating organic electroluminescence device driven at AC voltage[J]. Japanese Journal of Applied Physics , 2005, 44(9A): 6607-6611.
PERUMAL A, LVSSEM B, LEO K. High brightness alternating current electroluminescence with organic light emitting material[J]. Applied Physics Letters , 2012, 100(10): 103307.
LIU S Y, CHANG J H, WU I W, et al . Alternating current driven organic light emitting diodes using lithium fluoride insulating layers[J]. Scientific Reports , 2014, 4(1): 7559.
FRÖBEL M, HOFMANN S, LEO K, et al . Optimizing the internal electric field distribution of alternating current driven organic light-emitting devices for a reduced operating voltage[J]. Applied Physics Letters , 2014, 104(7): 071105.
ZHANG L, NAKANOTANI H, YOSHIDA K, et al . Analysis of alternating current driven electroluminescence in organic light emitting diodes: a comparative study[J]. Organic Electronics , 2014, 15(8): 1815-1821.
WANG K, LIU Y, WU C X, et al . Electroluminescence from μ LED without external charge injection[J]. Scientific Reports , 2020, 10(1): 8059.
SUNG J, CHOI Y S, KANG S J, et al . AC field-induced polymer electroluminescence with single wall carbon nanotubes[J]. Nano Letters , 2011, 11(3): 966-972.
CHO S H, JO S S, HWANG I, et al . Extremely bright full color alternating current electroluminescence of solution-blended fluorescent polymers with self-assembled block copolymer micelles[J]. ACS Nano , 2013, 7(12): 10809-10817.
CHEN Y H, XIA Y D, SUN H D, et al . Solution-processed highly efficient alternating current-driven field-induced polymer electroluminescent devices employing high- k relaxor ferroelectric polymer dielectric[J]. Advanced Functional Materials , 2014, 24(11): 1501-1508.
XIA F T, SUN X W, CHEN S M. Alternating-current driven quantum-dot light-emitting diodes with high brightness[J]. Nanoscale , 2019, 11(12): 5231-5239.
CHEN Y H, XIA Y D, SMITH G M, et al . Solution-processable hole-generation layer and electron-transporting layer: towards high-performance, alternating-current-driven, field-induced polymer electroluminescent devices[J]. Advanced Functional Materials , 2014, 24(18): 2677-2688.
LEE J H, CHO S H, KIM R H, et al . A field-induced hole generation layer for high performance alternating current polymer electroluminescence and its application to extremely flexible devices[J]. Journal of Materials Chemistry C , 2016, 4(20): 4434-4441.
XIA Y D, CHEN Y H, SUN H D, et al . Alternating current-driven, white field-induced polymer electroluminescent devices with high power efficiency[J] . Organic Electronics , 2014, 15(11): 3282-3291.
CHEN Y H, XIA Y D, SMITH G M, et al . Frequency-dependent, alternating current-driven, field-induced polymer electroluminescent devices with high power efficiency[J]. Advanced Materials , 2014, 26(48): 8133-8140.
XIA Y D, CHEN Y H, SMITH G M, et al . High-performance alternating current field-induced chromatic-stable white polymer electroluminescent devices employing a down-conversion layer[J]. Journal of Luminescence , 2015, 161: 82-86.
XU J W, SMITH G M, DUN C C, et al . Layered, nanonetwork composite cathodes for flexible, high-efficiency, organic light emitting devices[J]. Advanced Functional Materials , 2015, 25(28): 4397-4404.
XU J W, CARROLL D L, SMITH G M, et al . Achieving high performance in AC-field driven organic light sources[J]. Scientific Reports , 2016, 6: 24116.
XU J W, CARROLL D L, LI P Y, et al . Solution processing small-molecule organic emitter in field-induced, carrier gated lighting devices[J]. Advanced Optical Materials , 2017, 5(6): 1600917.
XU J W, CARROLL D L, SHAO L Q, et al . Polymer gating white flexible field-induced lighting device[J]. Advanced Materials Technologies , 2017, 2(8): 1700017.
XU J W, CUI Y, SMITH G M, et al . Tailoring spin mixtures by ion-enhanced Maxwell magnetic coupling in color-tunable organic electroluminescent devices[J]. Light : Science & Applications , 2018, 7(1): 46.
LEE S, KIM E H, YU S, et al . Alternating-current MXene polymer light-emitting diodes[J]. Advanced Functional Materials , 2020, 30(32): 2001224.
OH N, KIM B H, CHO S Y, et al . Double-heterojunction nanorod light-responsive LEDs for display applications[J]. Science , 2017, 355(6325): 616-619.
LI X M, WU Y, ZHANG S L, et al . CsPbX 3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Advanced Functional Materials , 2016, 26(15): 2435-2445.
YETTAPU G R, TALUKDAR D, SARKAR S, et al . Terahertz conductivity within colloidal CsPbBr 3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths[J]. Nano Letters , 2016, 16(8): 4838-4848.
LIU J J, SHENG X X, WU Y Q, et al . All-inorganic perovskite quantum dots/p-Si heterojunction light-emitting diodes under DC and AC driving modes[J]. Advanced Optical Materials , 2018, 6(2): 1700897.
LIU J J, LU Z B, ZHANG X J, et al . Low power consumption red light-emitting diodes based on inorganic perovskite quantum dots under an alternating current driving mode[J]. Nanomaterials , 2018, 8(12): 974.
TAN Z F, LUO J J, YANG L B, et al . Spectrally stable ultra-pure blue perovskite light-emitting diodes boosted by square-wave alternating voltage[J]. Advanced Optical Materials , 2020, 8(2): 1901094.
XU T, ZHOU J G, HUANG C C, et al . Highly simplified tandem organic light-emitting devices incorporating a green phosphorescence ultrathin emitter within a novel interface exciplex for high efficiency[J]. ACS Applied Materials & Interfaces , 2017, 9(12): 10955-10962.
FRÖBEL M, PERUMAL A, SCHWAB T, et al . White light emission from alternating current organic light-emitting devices using high frequency color-mixing[J]. Physica Status Solidi (A), 2013, 210(11): 2439-2444.
CHO S H, KIM E H, JEONG B, et al . Solution-processed electron-only tandem polymer light-emitting diodes for broad wavelength light emission[J]. Journal of Materials Chemistry C, 2017, 5(1): 110-117.
FRÖBEL M, SCHWAB T, KLIEM M, et al . Get it white: Color-tunable AC/DC OLEDs[J]. Light : Science & Applications , 2015, 4(2): e247.
ZHANG H, SU Q, CHEN S M. Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission[J]. Nature Communications , 2020, 11(1): 2826.
SADAF S M, RA Y H, NGUYEN H P T, et al . Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes[J]. Nano Letters , 2015, 15(10): 6696-6701.
KIM E H, CHO S H, LEE J H, et al . Organic light emitting board for dynamic interactive display[J]. Nature Communications , 2017, 8(1): 14964.
AKYOL F, NATH D N, KRISHNAMOORTHY S, et al . Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes[J]. Applied Physics Letters , 2012, 100(11): 111118.
ZHANG K X, LIANG H W, SHEN R S, et al . Negative differential resistance in low Al-composition p-GaN/Mg-doped Al 0.15 Ga 0.85 N/n + -GaN hetero-junction grown by metal-organic chemical vapor deposition on sapphire substrate[J]. Applied Physics Letters , 2014, 104(5): 053507.
ZHANG X, LIU S H, ZHANG L T, et al . In-planar-electrodes organic light-emitting devices for smart lighting applications[J]. Advanced Optical Materials , 2019, 7(3): 1800857.
ZHANG X, PAN T, ZHANG J X, et al . Color-tunable, spectra-stable flexible white top-emitting organic light-emitting devices based on alternating current driven and dual-microcavity technology[J]. ACS Photonics , 2019, 6(9): 2350-2357.
0
Views
156
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621