Efficient indoor point cloud semantic segmentation method based on spatial serialization
Image Processing|更新时间:2025-12-24
|
Efficient indoor point cloud semantic segmentation method based on spatial serialization
“In the field of indoor large-scale sparse point cloud semantic segmentation, researchers have proposed a novel network architecture that effectively enhances global structural modeling capabilities and geometric detail preservation, providing a scalable solution for efficient and high-precision semantic segmentation of large-scale point clouds.”
Chinese Journal of Liquid Crystals and DisplaysVol. 40, Issue 12, Pages: 1894-1904(2025)
作者机构:
1.上海电力大学 自动化工程学院, 上海 200090
2.锂越新能源集团有限公司, 上海 201600
3.上海派能能源科技股份有限公司, 上海 200120
作者简介:
基金信息:
National Natural Science Foundation of China(52575630);Project of the State Administration of Foreign Experts(H20240974);Natural Science Foundation of Shanghai Municipality(24ZR1425700)
CHEN Mingtao, WANG Haoting, SHANG Yanfei, et al. Efficient indoor point cloud semantic segmentation method based on spatial serialization[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(12): 1894-1904.
DOI:
CHEN Mingtao, WANG Haoting, SHANG Yanfei, et al. Efficient indoor point cloud semantic segmentation method based on spatial serialization[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(12): 1894-1904. DOI: 10.37188/CJLCD.2025-0197. CSTR: 32172.14.CJLCD.2025-0197.
Efficient indoor point cloud semantic segmentation method based on spatial serialization