WANG Yuxi, XU Yang, YUAN Xuxiang. Design of salience target detection method for RGB depth images[J]. Chinese journal of liquid crystals and displays, 2025, 40(4): 607-616.
DOI:
WANG Yuxi, XU Yang, YUAN Xuxiang. Design of salience target detection method for RGB depth images[J]. Chinese journal of liquid crystals and displays, 2025, 40(4): 607-616. DOI: 10.37188/CJLCD.2024-0230. CSTR: 32172.14.CJLCD.2024-0230.
Design of salience target detection method for RGB depth images
In order to efficiently use depth feature information to assist salient object detection, the fusion of different scale feature information is realized. In this paper, an improved salient object detection algorithm for RGB-D image saliency based on CDINet algorithm is proposed. Firstly, a multi-scale feature fusion module is added to enhance the transmission of feature information between encoder and decoder, so as to effectively reduce shallow feature loss, and obtain more feature information of salient objects through the jump connection of auxiliary decoder. Next, a circular attention module is connected at the tail of the CDINet’s network structure, which gradually optimizes local details by using memory-oriented scene understanding. Finally, the loss function is adjusted, and the consistency enhanced loss (CEL) is used to deal with the spatial consistency caused by the fusion of different scale features, and the salient areas are uniformly highlighted without increasing parameters. The experimental results show that compared with the original CDINet algorithm model, the improved model has an F-measure increase of 0.6% and a MAE decrease of 0.4% on LFSD data set, and an F-measure increase of 0.4% and a S-measure decrease of 0.5% on STERE data set. Compared with other algorithm models, this model basically meets the requirements of better detection performance and higher adaptability.
WANG J . Research on salient object detection based on RGB-D images [D]. Nanjing : Nanjing University of Information Science & Technology , 2023 . (in Chinese)
ACHINEK D N , SHEHU I S , ATHUMAN A M , et al . DAF-Net: dense attention feature pyramid network for multiscale object detection [J]. International Journal of Multimedia Information Retrieval , 2024 , 13 ( 2 ): 18 . doi: 10.1007/s13735-024-00323-x http://dx.doi.org/10.1007/s13735-024-00323-x
XIA C X , WANG J J , GE B . Mutual learning and boosting segmentation for RGB-D salient object detection [J]. Journal of Tonghua Normal University , 2024 , 45 ( 6 ): 52 - 58 . (in Chinese)
ZHANG C , CONG R M , LIN Q W , et al . Cross-modality discrepant interaction network for RGB-D salient object detection [C]// Proceedings of the 29th ACM International Conference on Multimedia . New York : ACM , 2021 : 2094 - 2102 . doi: 10.1145/3474085.3475364 http://dx.doi.org/10.1145/3474085.3475364
CONG R M , YANG N , ZHANG C , et al . RGB-D image saliency target detection method : CN , CN202110872457.1 [P]. 2023-07-30 . (in Chinese)
PANG Y W , ZHAO X Q , ZHANG L H , et al . Multi-scale interactive network for salient object detection [C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle : IEEE , 2020 : 9410 - 9419 . doi: 10.1109/cvpr42600.2020.00943 http://dx.doi.org/10.1109/cvpr42600.2020.00943
WOO S , PARK J , LEE J Y , et al . CBAM: convolutional block attention module [C]// Proceedings of the 15th European Conference on Computer Vision . Munich : Springer , 2018 : 3 - 19 . doi: 10.1007/978-3-030-01234-2_1 http://dx.doi.org/10.1007/978-3-030-01234-2_1
LI H , LIANG J Y , WU R Q , et al . Stereo superpixel segmentation via decoupled dynamic spatial-embedding fusion network [J]. IEEE Transactions on Multimedia , 2024 , 26 : 367 - 378 . doi: 10.1109/tmm.2023.3265843 http://dx.doi.org/10.1109/tmm.2023.3265843
PENG H , LI B , XIONG W H , et al . RGBD salient object detection: a benchmark and algorithms [C]// Proceedings of the 13th European Conference on Computer Vision . Zurich : Springer , 2014 : 92 - 109 . doi: 10.1007/978-3-319-10578-9_7 http://dx.doi.org/10.1007/978-3-319-10578-9_7
CHENG Y P , FU H Z , WEI X X , et al . Depth enhanced saliency detection method [C]// Proceedings of International Conference on Internet Multimedia Computing and Service . Xiamen : ACM , 2014 : 23 - 27 . doi: 10.1145/2632856.2632866 http://dx.doi.org/10.1145/2632856.2632866
WANG X X , WANG X , JIANG B , et al . MutualFormer: multi-modal representation learning via cross-diffusion attention [J]. International Journal of Computer Vision , 2024 , 132 ( 9 ): 3867 - 3888 . doi: 10.1007/s11263-024-02067-x http://dx.doi.org/10.1007/s11263-024-02067-x
ZHOU T , FAN D P , CHENG M M , et al . RGB-D salient object detection: a survey [J]. Computational Visual Media , 2021 , 7 : 37 - 69 . doi: 10.1007/s41095-020-0199-z http://dx.doi.org/10.1007/s41095-020-0199-z
ZHANG D D , WANG C P , FU Q . A new benchmark for camouflaged object detection: RGB-D camouflaged object detection dataset [J]. Open Physics , 2024 , 22 ( 1 ): 20240060 . doi: 10.1515/phys-2024-0060 http://dx.doi.org/10.1515/phys-2024-0060
YUAN X X . Research on saliency object detection algorithm based on deep learning [D]. Anshan : University of Science and Technology Liaoning , 2023 . (in Chinese)