1.北京邮电大学 电子工程学院, 北京 100876
[ "徐斌(1998—),男,安徽蚌埠人,硕士研究生,2020年于北京邮电大学获得学士学位,主要从事三维光场显示方面的研究。E-mail: xb1998@bupt.edu.cn" ]
[ "于迅博(1988—),男,辽宁铁岭人,博士,副教授,2016年于北京邮电大学获得博士学位,主要从事三维显示与新型显示技术方面的研究。E-mail: yuxunbo@126.com" ]
扫 描 看 全 文
徐斌, 于迅博, 高鑫, 等. 一种视点均匀分布的桌面式光场显示系统[J]. 液晶与显示, 2022,37(5):573-580.
Bin XU, Xun-bo YU, Xin GAO, et al. Tabletop light field display system with uniform distribution of viewpoints[J]. Chinese Journal of Liquid Crystals and Displays, 2022,37(5):573-580.
徐斌, 于迅博, 高鑫, 等. 一种视点均匀分布的桌面式光场显示系统[J]. 液晶与显示, 2022,37(5):573-580. DOI: 10.37188/CJLCD.2022-0041.
Bin XU, Xun-bo YU, Xin GAO, et al. Tabletop light field display system with uniform distribution of viewpoints[J]. Chinese Journal of Liquid Crystals and Displays, 2022,37(5):573-580. DOI: 10.37188/CJLCD.2022-0041.
基于视点分段式体像素的桌面光场显示系统具有正面观看视区以及100°超大视角,能够显示具有全视差的高质量三维图像。但是,该系统还存在所构建的视点在空间分布不均匀的问题,观看视区中间区域视点分布密集,两边区域视点分布稀疏,使得显示的三维图像出现透视关系不正确以及视点间的串扰等问题,影响显示质量。本文通过对系统视点的构建过程进行分析,发现造成视点分布不均匀问题的原因是系统采用的柱透镜存在像差,导致出射光线无法会聚于一点,而是形成一个弥散斑。因而,为了均匀系统视点分布,本文提出了采用对透镜进行光学优化的方法以减小像差,并设计了一种非球面透镜。最终通过实验验证了方法的可行性,系统视点分布的均匀度由39.32%提升至98.39%,显示图像透视关系不正确以及视点间的串扰等问题得到了有效改善。
Tabletop light filed display system based on views-segmented voxels can display high quality 3D images with frontal viewing area, 100° viewing angle and full parallax. However, the system also has the problem of nonuniform distribution of viewpoints. The central area of the viewing zone has dense distribution of viewpoints, and both marginal sides of the viewing zone has sparse distribution of viewpoints. Nonuniform distribution of viewpoints causes the incorrect perspective relations of the displayed 3D image and crosstalk between adjacent viewpoints. This paper performs analysis on the construction process of viewpoints and determines that the main reason for the nonuniform distribution of viewpoints is the aberration of the cylindrical lens used in the system which causes the emitted light rays not to converge at one point, but a diffuse spot. An aspheric lens is proposed and designed to optimize aberrations. Finally, the experiments are conducted to verify the correctness of the method. The uniformity of the viewpoints distribution is increased from 39.32% to 98.39%, and the problems of incorrect perspective and crosstalk between viewpoints are effectively improved.
光场显示电子沙盘视点分布非球面透镜
light field displayelectronic sandboxviewpoint distributionaspheric lens
BLANCHE P A. Holography, and the future of 3D display [J]. Light: Advanced Manufacturing, 2021, 2: 28. doi: 10.37188/lam.2021.028http://dx.doi.org/10.37188/lam.2021.028
BALRAM N, TOŠIĆ I. Light-field imaging and display systems [J]. Information Display, 2016, 32(4): 6-13. doi: 10.1002/j.2637-496x.2016.tb00917.xhttp://dx.doi.org/10.1002/j.2637-496x.2016.tb00917.x
LIU X, LI H F. The progress of light-field 3-D displays [J]. Information Display, 2014, 30(6): 6-14. doi: 10.1002/j.2637-496x.2014.tb00760.xhttp://dx.doi.org/10.1002/j.2637-496x.2014.tb00760.x
MA Q G, CAO L C, HE Z H, et al. Progress of three-dimensional light-field display [J]. Chinese Optics Letters, 2019, 17(11): 111001. doi: 10.3788/col201917.111001http://dx.doi.org/10.3788/col201917.111001
HUANG H K, HUA H. Systematic characterization and optimization of 3D light field displays [J]. Optics Express, 2017, 25(16): 18508-18525. doi: 10.1364/oe.25.018508http://dx.doi.org/10.1364/oe.25.018508
SANG X Z, GAO X, YU X B, et al. Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing [J]. Optics Express, 2018, 26(7): 8883-8889. doi: 10.1364/oe.26.008883http://dx.doi.org/10.1364/oe.26.008883
LIU B Y, SANG X Z, YU X B, et al. Time-multiplexed light field display with 120-degree wide viewing angle [J]. Optics Express, 2019, 27(24): 35728-35739. doi: 10.1364/oe.27.035728http://dx.doi.org/10.1364/oe.27.035728
YU X B, SANG X Z, GAO X, et al. Dynamic three-dimensional light-field display with large viewing angle based on compound lenticular lens array and multi-projectors [J]. Optics Express, 2019, 27(11): 16024-16031. doi: 10.1364/oe.27.016024http://dx.doi.org/10.1364/oe.27.016024
WETZSTEIN G, LANMAN D, HIRSCH M, et al. Compressive light field displays [J]. IEEE Computer Graphics and Applications, 2012, 32(5): 6-11. doi: 10.1109/mcg.2012.99http://dx.doi.org/10.1109/mcg.2012.99
CHEN D, SANG X Z, YU X B, et al. Performance improvement of compressive light field display with the viewing-position-dependent weight distribution [J]. Optics Express, 2016, 24(26): 29781-29793. doi: 10.1364/oe.24.029781http://dx.doi.org/10.1364/oe.24.029781
WETZSTEIN G, LANMAN D, HIRSCH M, et al. Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting [J]. ACM Transactions on Graphics, 2012, 31(4): 80. doi: 10.1145/2185520.2185576http://dx.doi.org/10.1145/2185520.2185576
WEN J, YAN X P, JIANG X Y, et al. Integral imaging based light field display with holographic diffusor: principles, potentials and restrictions [J]. Optics Express, 2019, 27(20): 27441-27458. doi: 10.1364/oe.27.027441http://dx.doi.org/10.1364/oe.27.027441
YU X B, SANG X Z, GAO X, et al. 360-degree tabletop 3D light-field display with ring-shaped viewing range based on aspheric conical lens array [J]. Optics Express, 2019, 27(19): 26738-26748. doi: 10.1364/oe.27.026738http://dx.doi.org/10.1364/oe.27.026738
XIONG J H, WU S T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications [J]. eLight, 2021, 1: 3. doi: 10.1186/s43593-021-00003-xhttp://dx.doi.org/10.1186/s43593-021-00003-x
KANG H Y, SIM Y, HAN J H. Terrain rendering with unlimited detail and resolution [J]. Graphical Models, 2018, 97: 64-79. doi: 10.1016/j.gmod.2018.04.001http://dx.doi.org/10.1016/j.gmod.2018.04.001
ZHAI R, LU K, PAN W G, et al. GPU-based real-time terrain rendering: design and implementation [J]. Neurocomputing, 2016, 171: 1-8. doi: 10.1016/j.neucom.2014.08.108http://dx.doi.org/10.1016/j.neucom.2014.08.108
EVANGELIDIS K, PAPADOPOULOS T, PAPATHEODOROU K, et al. 3D geospatial visualizations: animation and motion effects on spatial objects [J]. Computers & Geosciences, 2018, 111: 200-212. doi: 10.1016/j.cageo.2017.11.007http://dx.doi.org/10.1016/j.cageo.2017.11.007
YOSHIDA S. Virtual multiplication of light sources for a 360°-viewable tabletop 3D display [J]. Optics Express, 2020, 28(22): 32517-32528. doi: 10.1364/oe.408628http://dx.doi.org/10.1364/oe.408628
XING Y, XIA Y P, LI S, et al. Annular sector elemental image array generation method for tabletop integral imaging 3D display with smooth motion parallax [J]. Optics Express, 2020, 28(23): 34706-34716. doi: 10.1364/oe.409275http://dx.doi.org/10.1364/oe.409275
董昊翔,于迅博,金秋,等.一种基于视点分段式体像素的具有100°正面观看视角的桌面式光场显示系统[J].中国激光,2022,49(4):0409001.
DONG H X, YU X B, JIN Q, et al. Tabletop 3D light-field display with 100° frontal viewing angle based on views-segmented voxels [J]. Chinese Journal of Lasers, 2022, 49(4): 0409001. (in Chinese)
SANG X Z, FAN F C, JIANG C C, et al. Demonstration of a large-size real-time full-color three-dimensional display [J]. Optics Letters, 2009, 34(24): 3803-3805. doi: 10.1364/ol.34.003803http://dx.doi.org/10.1364/ol.34.003803
0
浏览量
161
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构