{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"激光对固态电解质金属氧化物薄膜晶体管性能的影响"}]},{"lang":"en","data":[{"name":"text","data":"Influence of laser irradiation on solid-electrolyte based metal-oxide thin film transistors performance"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"杨","givenname":"倩","namestyle":"eastern","prefix":""},{"lang":"en","surname":"YANG","givenname":"Qian","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":["first-author"],"bio":[{"lang":"zh","text":["杨倩(1988-), 女, 山西太原人, 博士研究生, 讲师, 2013年于福州大学获得硕士学位, 主要从事薄膜晶体管的研究。E-mail:yqian_0116@163.com"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"杨倩"}]},{"name":"text","data":"(1988-), 女, 山西太原人, 博士研究生, 讲师, 2013年于福州大学获得硕士学位, 主要从事薄膜晶体管的研究。E-mail:"},{"name":"text","data":"yqian_0116@163.com"}]]}],"email":"yqian_0116@163.com","deceased":false},{"name":[{"lang":"zh","surname":"杜","givenname":"世远","namestyle":"eastern","prefix":""},{"lang":"en","surname":"DU","givenname":"Shi-yuan","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff2","text":"2"}],"role":["corresp"],"corresp":[{"rid":"cor1","lang":"zh","text":"杜世远, E-mail:282323559@qq.com","data":[{"name":"text","data":"杜世远, E-mail:282323559@qq.com"}]}],"bio":[{"lang":"zh","text":["杜世远(1988-), 男, 福建泉州人, 硕士, 讲师, 2013年于福州大学获得硕士学位, 主要从事半导体器件及医疗设备的研究。E-mail:282323559@qq.com"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"杜世远"}]},{"name":"text","data":"(1988-), 男, 福建泉州人, 硕士, 讲师, 2013年于福州大学获得硕士学位, 主要从事半导体器件及医疗设备的研究。E-mail:"},{"name":"text","data":"282323559@qq.com"}]]}],"email":"282323559@qq.com","deceased":false},{"name":[{"lang":"zh","surname":"边","givenname":"锐","namestyle":"eastern","prefix":""},{"lang":"en","surname":"BIAN","givenname":"Rui","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"1","text":"福州大学 至诚学院, 福建 福州 350002","data":[{"name":"text","data":"福州大学 至诚学院, 福建 福州 350002"}]},{"lang":"en","label":"1","text":"Zhicheng College, Fuzhou University, Fuzhou 350002, China","data":[{"name":"text","data":"Zhicheng College, Fuzhou University, Fuzhou 350002, China"}]}]},{"id":"aff2","intro":[{"lang":"zh","label":"2","text":"福建卫生职业技术学院, 福建 福州 350101","data":[{"name":"text","data":"福建卫生职业技术学院, 福建 福州 350101"}]},{"lang":"en","label":"2","text":"Fujian Health College, Fuzhou 350101, China","data":[{"name":"text","data":"Fujian Health College, Fuzhou 350101, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"基于固态电解质的金属氧化物薄膜晶体管具有良好的环境稳定性和优异的电学性能,因而具有巨大的应用潜力。针对传统基于固态电解质金属氧化物薄膜晶体管调控方式工艺复杂、制备时间长的问题,本文采用高"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"text","data":"固态电解质Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"作为栅绝缘层,透明氧化铟锡(ITO)作为有源层以及源漏电极,在沉积半导体层和电极之前,利用飞秒激光对Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"绝缘层薄膜进行照射处理。探究了不同激光强度对固态电解质金属氧化物晶体管电学性能的影响。随着激光强度的提高,晶体管的开态电流提高,阈值电压负向漂移。同时,本文进一步探索了激光对固态电解质晶体管突触性能的影响,兴奋性后突触电流(EPSC)随着激光强度的增强而增加。XPS测试表明,Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜中氧空位含量增多,从而导致器件电导的变化。本文利用激光优异的加工处理速度和对材料性能的精确控制,提出了一种简单、快速("},{"name":"text","data":"<"},{"name":"text","data":" 1 s)、低温("},{"name":"text","data":"<"},{"name":"text","data":" 45℃)地调控晶体管性能的方式。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"The solid-electrolyte based metal-oxide thin film transistors has huge potential due to its good environment stability and excellent electrical performance. However, the sophisticated fabrication process and time consuming are the main drawbacks involved in the traditional method to modulate the electrical performance of solid-electrolyte based metal-oxide thin film transistors. Laser processing on the materials provides excellent processing speed and precise control. The metal-oxide thin film transistor was realized utilizing high"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"text","data":" solid electrolyte as dielectric layer and transparent indium tin oxide (ITO) as semiconductor layer. Prior to the deposition of active layer and electrodes, fs-laser was induced to irradiate on the surface of Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":" dielectric layer. As the intensity of laser irradiation increased, the "},{"name":"italic","data":[{"name":"text","data":"I"}]},{"name":"sub","data":[{"name":"text","data":"ON"}]},{"name":"text","data":" of the transistor was enhanced and the threshold voltage was negatively drifted. In addition, the Excitatory Post Synaptic Current(EPSC) of the solid-electrolyte based metal-oxide thin film transistors was studied under different laser intensities. The EPSC was significantly increased as the laser intensity enhanced. Meanwhile, XPS results showed that the amount of oxygen vacancies could be controlled via laser irradiation. A simple, fast("},{"name":"text","data":"<"},{"name":"text","data":" 1 s) and low-temperature("},{"name":"text","data":"<"},{"name":"text","data":" 45 ℃) method was proposed to modulate the performance of thin film transistors."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"固态电解质"}],[{"name":"text","data":"金属氧化物薄膜晶体管"}],[{"name":"text","data":"激光"}]]},{"lang":"en","data":[[{"name":"text","data":"solid electrolyte"}],[{"name":"text","data":"metal-oxide thin film transistor"}],[{"name":"text","data":"laser"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"自2003年Nomura报道透明金属氧化物薄膜晶体管(Metal-Oxide Thin Film Transistor, MOTFT)以来,关于材料体系和制备技术得到蓬勃发展"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"3","type":"bibr","rid":"b3","data":[{"name":"text","data":"3"}]}}],"rid":["b1","b2","b3"],"text":"1-3","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。MOTFT具有响应时间短、迁移率高、生长温度低、高透光性和可大面积制备等优点,有利于实现较大的开口率,能够满足新一代4K大尺寸显示器的快速、大面积和更高清晰度显示的需求"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"5","type":"bibr","rid":"b5","data":[{"name":"text","data":"5"}]}}],"rid":["b4","b5"],"text":"4-5","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。值得注意的是,基于固态电解质的MOTFT具有良好的环境稳定性和优异的电学性能,因而具有巨大的应用潜力"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"7","type":"bibr","rid":"b7","data":[{"name":"text","data":"7"}]}}],"rid":["b6","b7"],"text":"6-7","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"传统的提高固态电解质MOTFT电学性能的方法主要包括材料设计或改变器件结构"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"10","type":"bibr","rid":"b10","data":[{"name":"text","data":"10"}]}}],"rid":["b8","b9","b10"],"text":"8-10","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。例如,Beom K.等人采用双栅器件结构从而提高基于TaO"},{"name":"sub","data":[{"name":"italic","data":[{"name":"text","data":"x"}]}]},{"name":"text","data":"/n-IGZO的器件电导"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"11","type":"bibr","rid":"b11","data":[{"name":"text","data":"11"}]}},{"name":"text","data":"]"}]},{"name":"text","data":";Pillaiet等人则是通过调节固态电解质绝缘层的厚度实现对晶体管性能的调控"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"12","type":"bibr","rid":"b12","data":[{"name":"text","data":"12"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。然而,上述方法存在制作工艺复杂、制备时间长的问题,同时,难以对晶体管实现精确的调控"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"13","type":"bibr","rid":"b13","data":[{"name":"text","data":"13"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}}],"rid":["b13","b14"],"text":"13-14","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"利用激光对材料进行处理为上述问题提供了一个简单的解决方案,通过利用激光对材料产生的局部热效应,以及激光优异的加工处理速度,从而实现对材料性能的精确控制"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"15","type":"bibr","rid":"b15","data":[{"name":"text","data":"15"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"18","type":"bibr","rid":"b18","data":[{"name":"text","data":"18"}]}}],"rid":["b15","b16","b17","b18"],"text":"15-18","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。本文探究了激光对固态电解质金属氧化物薄膜晶体管电学性能的影响,该晶体管采用高"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"text","data":"固态电解质Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"作为栅绝缘层,透明氧化铟锡(ITO)作为有源层以及源漏电极。需要注意的是,在沉积半导体层和电极之前,采用飞秒激光(Femtosecond Laser, fs-laser)对Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"绝缘层薄膜进行照射处理。研究发现,随着激光强度的提高,Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT的开态电流增加,阈值电压负向漂移。通过对Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜进行XPS测试,表明激光可以调控薄膜中氧空位的含量。同时,本文进一步探索了激光对固态电解质晶体管突触性能的影响,兴奋性后突触电流(EPSC)随着激光强度的增强而增加。本文提出了一种简单、快速("},{"name":"text","data":"<"},{"name":"text","data":" 1 s)、低温("},{"name":"text","data":"<"},{"name":"text","data":" 45 ℃)地调控晶体管性能的方式,为今后基于固态电解质MOTFT更加广泛的应用奠定了基础。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"实验"}],"level":"1","id":"s2"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.1"}],"title":[{"name":"text","data":"固态电解质MOTFT的制备"}],"level":"2","id":"s2-1"}},{"name":"p","data":[{"name":"text","data":"本文制备的固态电解质MOTFT为底栅顶接触结构,采用纯硅片作为底栅电极。首先,用丙酮、异丙醇和去离子水对硅片依次进行清洗,每次5 min,之后用氮气对其吹干;随后,在硅片上利用射频溅射法溅射150 nm的Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"绝缘体层,溅射功率100 W,气压为0.35 Pa。利用飞秒激光对Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜进行照射处理,激光脉冲频率为1 MHz、脉冲宽度为283 fs、波长517 nm;为了探究激光强度对Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜的影响,本文选择了3种不同的激光强度:263,309,358 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":",对Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"绝缘层薄膜照射时采用网格型方式扫描薄膜表面,扫描速率为500 mm/s。之后,利用扩散溅射法制备ITO半导体层和源/漏电极,在溅射过程中,ITO源/漏极在纯氩环境下通过射频磁控溅射镍掩模板沉积,掩模板放置在Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/Si衬底上方,距离衬底50 μm,溅射的ITO纳米团簇会衍射到掩膜版的阴影区,因此,在ITO源极/漏极之间会同时自组装形成一薄ITO沟道层。器件沟道长度和宽度分别为80 μm和400 μm,在扩散溅射过程中压力和功率分别为0.3 Pa和300 W。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.2"}],"title":[{"name":"text","data":"实验仪器"}],"level":"2","id":"s2-2"}},{"name":"p","data":[{"name":"text","data":"本文制备的固态电解质金属氧化物晶体管电学特性测试使用Agilent 2902半导体器件参数分析仪,Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜的表面形貌使用原子力显微镜(AFM,Bruker Multimode 8)测量。利用XPS研究了激光照射对Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜的化学成分的改变。所有电学特性均在室温环境下测试。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"结果与讨论"}],"level":"1","id":"s3"}},{"name":"p","data":[{"name":"xref","data":{"text":"图 1(a)","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1(a)"}]}},{"name":"text","data":"为本文制备的底栅顶接触Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT的结构示意图,其中,绝缘层为固态电解质Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜,有源层为ITO薄膜。值得注意的是,本文在制备电极和半导体层的过程中,采用了扩散溅射法,即在一个过程中同时形成半导体层和金属层。在溅射100 nm ITO电极时,形成了厚度约20 nm的自组装ITO层,该自组装ITO薄膜显示出半导体性能。利用掩模板自组装方法同时形成电极和半导体层的方法具有制作工艺简单、成本低的优势。由于固态电解质的电双层效应,栅极介质层和半导体层界面之间具有极强的电双层调制效应,因此,基于固态电解质的薄膜晶体管可以在低电压下工作,高"},{"name":"italic","data":[{"name":"text","data":"k"}]},{"name":"text","data":"的Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜("},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"text","data":"=20~35)可以有效降低驱动电压、降低器件功耗。我们采用了扩散溅射法制备半导体层和源漏电极,从而大大简化了工艺步骤,并在电极和有源层之间提供了更好的欧姆接触。需要注意的是,在沉积半导体层和电极之前,本文利用飞秒激光对Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜进行照射,如"},{"name":"xref","data":{"text":"图 1(b)","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1(b)"}]}},{"name":"text","data":"所示,激光扫描方式为网格型,激光扫描速率为500 mm/s,激光波长为554 nm,激光脉冲宽度为283 fs。"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"(a) Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT结构示意图;(b)激光照射Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜示意图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"(a) Structure diagram of Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT; (b)Schematic diagram of Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":" insulator layer under laser irradiation"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907239&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907239&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907239&type=middle"}]}},{"name":"p","data":[{"name":"xref","data":{"text":"图 2(a)","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2(a)"}]}},{"name":"text","data":"为本文制备的Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT双扫转移曲线。该曲线在Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜厚度150 nm、源漏电压"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"DS"}]},{"name":"text","data":"为5 V情况下测试,器件呈现出典型的n型特性曲线,记忆窗大于3 V,转移曲线中的逆时针迟滞是由于固态电解质绝缘层中移动离子的运动引起的。同时,由于固态电解质中电双层的强静电耦合效应,制备的晶体管的电流开关比大于10"},{"name":"sup","data":[{"name":"text","data":"6"}]},{"name":"text","data":",导通电流大于10"},{"name":"sup","data":[{"name":"text","data":"-4"}]},{"name":"text","data":"A。Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT的输出曲线如"},{"name":"xref","data":{"text":"图 2(b)","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2(b)"}]}},{"name":"text","data":"所示,器件在低的源漏电压"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"DS"}]},{"name":"text","data":"下"},{"name":"italic","data":[{"name":"text","data":"I"}]},{"name":"sub","data":[{"name":"text","data":"DS"}]},{"name":"text","data":"呈线性增加,说明TFT具有良好的欧姆接触。"}]},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"(a) Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT器件双扫曲线; (b)Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT输出曲线"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"(a) Dual sweep transfer curves of Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO-based TFT at a constant "},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"DS"}]},{"name":"text","data":" of 5.0 V; (b)Output curves of the Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO-based TFT"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907242&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907242&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907242&type=middle"}]}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1"}],"title":[{"name":"text","data":"不同激光强度对固态电解质TFT的影响"}],"level":"2","id":"s3-1"}},{"name":"p","data":[{"name":"text","data":"为了研究激光强度对Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜表面的影响,本文研究了不同激光强度下的MOTFT特性。"},{"name":"xref","data":{"text":"图 3","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3"}]}},{"name":"text","data":"展示了在激光扫描速率为500 mm/s时,不同激光强度下器件的"},{"name":"italic","data":[{"name":"text","data":"I"}]},{"name":"sub","data":[{"name":"text","data":"DS"}]},{"name":"text","data":"-"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"GS"}]},{"name":"text","data":"特性曲线。从图中可以看到,在激光强度为263 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"和358 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"时,开态电流有着明显的差异。晶体管在栅压"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"GS"}]},{"name":"text","data":"=5 V、激光强度358 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"时的开态电流(20.3 μA)是激光强度263 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"时的开态电流(3.01 μA)的近7倍,且关态电流也明显增大。这表明在较高的激光强度下有更多的可移动的离子,从而导致在半导体层中产生较高的电子密度。同时,大量移动离子的积累导致阈值电压的负向漂移。我们采用了原子力显微镜(AFM)的tapping模式来表征Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜的表面形貌,Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜在无激光照射和激光强度为309 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"时的表面粗糙度均方根分别为0.854 nm和0.680 nm,如"},{"name":"xref","data":{"text":"图 4(a)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(a)"}]}},{"name":"text","data":"、"},{"name":"xref","data":{"text":"(b)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"(b)"}]}},{"name":"text","data":"所示,由此可以得出激光照射对Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜表面粗糙度没有显著影响。"},{"name":"xref","data":{"text":"图 5","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5"}]}},{"name":"text","data":"为本文制备的Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"绝缘层的"},{"name":"italic","data":[{"name":"text","data":"C"}]},{"name":"text","data":"-"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"text","data":"双扫曲线,从该曲线中可以得到,在AC 1 MHz的频率下150 nm厚度的Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜介电常数(κ)为21。"}]},{"name":"fig","data":{"id":"Figure3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"不同激光强度下Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT的转移曲线"}]},{"lang":"en","label":[{"name":"text","data":"Fig 3"}],"title":[{"name":"text","data":"Tansfer curves of Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT under different laser intensities"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907246&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907246&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907246&type=middle"}]}},{"name":"fig","data":{"id":"Figure4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"text","data":"(a) 无激光照射和(b)激光强度为309 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"时Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜的表面形貌"}]},{"lang":"en","label":[{"name":"text","data":"Fig 4"}],"title":[{"name":"text","data":"Surface RMS roughness of Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"thin film. (a)With no laser irradiation; (b)With laser intensity of 309 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907251&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907251&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907251&type=middle"}]}},{"name":"fig","data":{"id":"Figure5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"双扫"},{"name":"italic","data":[{"name":"text","data":"C"}]},{"name":"text","data":"-"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"text","data":"曲线"}]},{"lang":"en","label":[{"name":"text","data":"Fig 5"}],"title":[{"name":"text","data":"Dual sweep"},{"name":"italic","data":[{"name":"text","data":"C"}]},{"name":"text","data":"-"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"text","data":" characteristics of the device"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907255&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907255&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907255&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2"}],"title":[{"name":"text","data":"不同激光强度下Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜的XPS分析"}],"level":"2","id":"s3-2"}},{"name":"p","data":[{"name":"text","data":"上述结果清楚地表明,激光照射对基于Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT的性能有明显影响。为了进一步理解其机理,我们利用O1s-XPS核级XPS谱研究了Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜的结构重组现象。"},{"name":"xref","data":{"text":"图 6(a","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6(a"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"d)","type":"fig","rid":"Figure6","data":[{"name":"text","data":"d)"}]}},{"name":"text","data":"所示为不同激光强度下Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜的O1s峰,(530.4±0.1)、(531.5±0.1)eV和(532.5±0.1)eV处对应的去卷积峰通常归属于金属氧化物晶格(Ta—O)、氧空位(V"},{"name":"sub","data":[{"name":"text","data":"O"}]},{"name":"text","data":")和碳相关杂质(C=O)。可以明显观察到,激光照射导致了Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜的结构重组,特别是在较高的激光强度下。"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":"为Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜Ta—O、V"},{"name":"sub","data":[{"name":"text","data":"O"}]},{"name":"text","data":"、C=O峰的面积百分比,结果表明,随着激光强度从263 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"增加到358 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":",氧空位V"},{"name":"sub","data":[{"name":"text","data":"O"}]},{"name":"text","data":"的相对含量从23.2%增加到34.0%,而Ta—O的面积百分比由69.9%下降到54.6%。该结果清楚地表明,在激光照射下Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜中产生了大量的氧空位,从而显著增加了沟道中载流子的浓度,并最终导致开态电流的增加以及阈值电压的负漂。该研究结果还表明,为了通过Ta—O键的解离获得更多的氧空位,激光强度的最小阈值是必要的。"}]},{"name":"fig","data":{"id":"Figure6","caption":[{"lang":"zh","label":[{"name":"text","data":"图6"}],"title":[{"name":"text","data":"(a~d)不同激光强度下Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜的O1s峰"}]},{"lang":"en","label":[{"name":"text","data":"Fig 6"}],"title":[{"name":"text","data":"(a~d)O1s peaks of Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"thin film under different laser intensities"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907262&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907262&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907262&type=middle"}]}},{"name":"table","data":{"id":"Table1","caption":[{"lang":"zh","label":[{"name":"text","data":"表1"}],"title":[{"name":"text","data":"Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜在不同激光强度时Ta—O、V"},{"name":"sub","data":[{"name":"text","data":"O"}]},{"name":"sup","data":[{"name":"text","data":"2+"}]},{"name":"text","data":"、C=O峰面积百分比"}]},{"lang":"en","label":[{"name":"text","data":"Table 1"}],"title":[{"name":"text","data":"Area percentage of Ta—O, V"},{"name":"sub","data":[{"name":"text","data":"O"}]},{"name":"sup","data":[{"name":"text","data":"2+"}]},{"name":"text","data":", C=O deconvoluted peaks under different laser intensities"}]}],"note":[],"table":[{"head":[[{"align":"center","data":[]},{"align":"center","data":[{"name":"text","data":"无激光"}]},{"align":"center","data":[{"name":"text","data":"263 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]}]},{"align":"center","data":[{"name":"text","data":"309 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]}]},{"align":"center","data":[{"name":"text","data":"358 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]}]}]],"body":[[{"align":"center","data":[{"name":"text","data":"Ta—O"}]},{"align":"center","data":[{"name":"text","data":"72.58%"}]},{"align":"center","data":[{"name":"text","data":"69.99%"}]},{"align":"center","data":[{"name":"text","data":"59.60%"}]},{"align":"center","data":[{"name":"text","data":"54.64%"}]}],[{"align":"center","data":[{"name":"text","data":"V"},{"name":"sub","data":[{"name":"text","data":"O"}]},{"name":"sup","data":[{"name":"text","data":"2+"}]}]},{"align":"center","data":[{"name":"text","data":"22.35%"}]},{"align":"center","data":[{"name":"text","data":"23.20%"}]},{"align":"center","data":[{"name":"text","data":"30.84%"}]},{"align":"center","data":[{"name":"text","data":"34.02%"}]}],[{"align":"center","data":[{"name":"text","data":"C=O"}]},{"align":"center","data":[{"name":"text","data":"5.07%"}]},{"align":"center","data":[{"name":"text","data":"6.81%"}]},{"align":"center","data":[{"name":"text","data":"9.56%"}]},{"align":"center","data":[{"name":"text","data":"11.34%"}]}]],"foot":[]}]}},{"name":"p","data":[{"name":"xref","data":{"text":"图 7","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7"}]}},{"name":"text","data":"所示为本文制备的Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT的工作机理。当施加正栅压时,如"},{"name":"xref","data":{"text":"图 7(a)","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7(a)"}]}},{"name":"text","data":"所示,带负电的氧离子被吸引到Si/Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"界面,带正电的离子氧空位被排斥到Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO界面上,因而导致在绝缘层/半导体层界面氧空位的积累。在"},{"name":"xref","data":{"text":"图 7(b)","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7(b)"}]}},{"name":"text","data":"中,激光照射会导致绝缘层/半导体层界面上更多的氧空位积累,导致更多的载流子(电子)积聚在ITO半导体层,并从源极漂移至漏极。有趣的是,绝缘层/半导体层界面上大量氧空位的积累将在固体电解质中形成自上而下的内建电场,从而削弱栅极电场的作用。当施加负栅压时,如"},{"name":"xref","data":{"text":"图 7(c)","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7(c)"}]}},{"name":"text","data":"所示,由于电离氧空位和负氧离子的复合,内建电场消失,晶体管处于OFF态。"}]},{"name":"fig","data":{"id":"Figure7","caption":[{"lang":"zh","label":[{"name":"text","data":"图7"}],"title":[{"name":"text","data":"Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT的工作机理。(a)底电极施加正栅压;(b)激光照射在有源层/绝缘层界面引入更多的氧空位;(c)底电极施加负栅压"}]},{"lang":"en","label":[{"name":"text","data":"Fig 7"}],"title":[{"name":"text","data":"Working mechanism of Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT.(a)Positive gate voltage is applied to the bottom electrode; (b) Laser irradiation induces more oxygen vacancies accumulated at the semiconductor/insulator interface; (c) Negative gate voltage is applied to the bottom electrode"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907267&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907267&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907267&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.3"}],"title":[{"name":"text","data":"激光对固态电解质MOTFT突触性能的影响"}],"level":"2","id":"s3-3"}},{"name":"p","data":[{"name":"text","data":"基于本文制备的固态电解质Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT的特性,利用固态电解质绝缘层的迟滞效应以及激光对Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜中氧空位含量的调控效果,进一步探索了不同激光强度对Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT突触行为的影响。"},{"name":"xref","data":{"text":"图 8(a)","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8(a)"}]}},{"name":"text","data":"展示了基于Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO的突触晶体管的典型兴奋性后突触电流(Excitatory Post Synaptic Current,EPSC),突触后电流是通过突触前脉冲(即栅电压脉冲"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"G"}]},{"name":"text","data":")触发的,脉冲电压"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"G"}]},{"name":"text","data":"为3 V,脉冲宽度为150 ms。突触前脉冲结束时,EPSC信号高达9.5 μA,然后衰减到2.4 μA。这是由于正离子氧空位在Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO界面上积累,从而调节了沟道电导,导致EPSC的增加;而EPSC的缓慢衰减则是由于突触前脉冲结束后带正电的氧空位离子和带负电的氧离子缓慢复合过程导致的。"}]},{"name":"fig","data":{"id":"Figure8","caption":[{"lang":"zh","label":[{"name":"text","data":"图8"}],"title":[{"name":"text","data":"(a) Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT的EPSC响应("},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"G"}]},{"name":"text","data":"=3 V,脉宽150 ms); (b)不同激光强度下Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT的EPSC响应"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"G"}]},{"name":"text","data":"=3 V,脉宽150 ms)"}]},{"lang":"en","label":[{"name":"text","data":"Fig 8"}],"title":[{"name":"text","data":"(a) EPSC response of Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT("},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"G"}]},{"name":"text","data":"=3 V, pulse ms); (b)EPSC response of Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT under different laser intensities("},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"G"}]},{"name":"text","data":"=3 V, pulse ms)"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907272&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907272&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20907272&type=middle"}]}},{"name":"p","data":[{"name":"xref","data":{"text":"图 8(b)","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8(b)"}]}},{"name":"text","data":"所示为在突触前脉冲"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"G"}]},{"name":"text","data":"为3 V,脉冲宽度为150 ms时,Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO晶体管在3种不同激光强度下后突触电流EPSC的变化。在脉冲宽度一定时,EPSC值随激光强度的增加而逐渐增大,表明激光诱导产生的离子数量增加。同时,当激光强度从263 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"增加到309 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"时,EPSC值发生了显著变化,而当激光强度超过309 mJ/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"时,EPSC值变化减慢。这种行为和电解质中自上而下的内建电场的建立有关,这种电场是由绝缘层/半导体层上的氧空位累积引起的,从而削弱了栅极电场的影响。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"结论"}],"level":"1","id":"s4"}},{"name":"p","data":[{"name":"text","data":"本文探究了激光对Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT电学性能的影响,在沉积半导体层和电极之前,采用飞秒激光对Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"绝缘层薄膜进行照射处理。研究发现,随着激光强度的提高,Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"/ITO TFT的开态电流增加,阈值电压负向漂移,并且,晶体管的兴奋性后突触电流(EPSC)随着激光强度的增强而增加。XPS测试表明,激光照射可以调控Ta"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"O"},{"name":"sub","data":[{"name":"text","data":"5"}]},{"name":"text","data":"薄膜中氧空位的含量,进而调节了载流子浓度。本文提出了一种简单、快速、低温的方式调控晶体管性能,为今后基于固态电解质金属氧化物薄膜晶体管的更加广泛应用奠定了基础。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"J W SPENCER"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Firms' knowledge-sharing strategies in the global innovation system:empirical evidence from the flat panel display industry"},{"name":"text","data":" . "},{"name":"text","data":"Strategic Management Journal"},{"name":"text","data":" , "},{"name":"text","data":"2003"},{"name":"text","data":" . "},{"name":"text","data":"24"},{"name":"text","data":" ( "},{"name":"text","data":"3"},{"name":"text","data":" ): "},{"name":"text","data":"217"},{"name":"text","data":" - "},{"name":"text","data":"233"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1002/smj.290"}],"href":"http://doi.org/10.1002/smj.290"}},{"name":"text","data":"."}],"title":"Firms' knowledge-sharing strategies in the global innovation system:empirical evidence from the flat panel display industry"}]},{"id":"b2","label":"2","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"E FORTUNATO"},{"name":"text","data":" , "},{"name":"text","data":"P BARQUINHA"},{"name":"text","data":" , "},{"name":"text","data":"R MARTINS"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Oxide semiconductor thin-film transistors:a review of recent advances"},{"name":"text","data":" . "},{"name":"text","data":"Advanced Materials"},{"name":"text","data":" , "},{"name":"text","data":"2012"},{"name":"text","data":" . "},{"name":"text","data":"24"},{"name":"text","data":" ( "},{"name":"text","data":"22"},{"name":"text","data":" ): "},{"name":"text","data":"2945"},{"name":"text","data":" - "},{"name":"text","data":"2986"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1002/adma.201103228"}],"href":"http://doi.org/10.1002/adma.201103228"}},{"name":"text","data":"."}],"title":"Oxide semiconductor thin-film transistors:a review of recent advances"}]},{"id":"b3","label":"3","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"K NOMURA"},{"name":"text","data":" , "},{"name":"text","data":"H OHTA"},{"name":"text","data":" , "},{"name":"text","data":"A TAKAGI"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors"},{"name":"text","data":" . "},{"name":"text","data":"Nature"},{"name":"text","data":" , "},{"name":"text","data":"2004"},{"name":"text","data":" . "},{"name":"text","data":"432"},{"name":"text","data":" ( "},{"name":"text","data":"7016"},{"name":"text","data":" ): "},{"name":"text","data":"488"},{"name":"text","data":" - "},{"name":"text","data":"492"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1038/nature03090"}],"href":"http://doi.org/10.1038/nature03090"}},{"name":"text","data":"."}],"title":"Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors"}]},{"id":"b4","label":"4","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"R F P MARTINS"},{"name":"text","data":" , "},{"name":"text","data":"A AHNOOD"},{"name":"text","data":" , "},{"name":"text","data":"N CORREIA"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Recyclable, flexible, low-power oxide electronics"},{"name":"text","data":" . "},{"name":"text","data":"Advanced Functional Materials"},{"name":"text","data":" , "},{"name":"text","data":"2013"},{"name":"text","data":" . "},{"name":"text","data":"23"},{"name":"text","data":" ( "},{"name":"text","data":"17"},{"name":"text","data":" ): "},{"name":"text","data":"2153"},{"name":"text","data":" - "},{"name":"text","data":"2161"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1002/adfm.201202907"}],"href":"http://doi.org/10.1002/adfm.201202907"}},{"name":"text","data":"."}],"title":"Recyclable, flexible, low-power oxide electronics"}]},{"id":"b5","label":"5","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"W CAI"},{"name":"text","data":" , "},{"name":"text","data":"H L NING"},{"name":"text","data":" , "},{"name":"text","data":"Z N ZHU"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Investigation of direct inkjet-printed versus spin-coated ZrO"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":" for sputter IGZO thin film transistor"},{"name":"text","data":" . "},{"name":"text","data":"Nanoscale Research Letters"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"14"},{"name":"text","data":" "},{"name":"text","data":"80"},{"name":"text","data":" "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1186/s11671-019-2905-2"}],"href":"http://doi.org/10.1186/s11671-019-2905-2"}},{"name":"text","data":"."}],"title":"Investigation of direct inkjet-printed versus spin-coated ZrO2 for sputter IGZO thin film transistor"}]},{"id":"b6","label":"6","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"H YABUTA"},{"name":"text","data":" , "},{"name":"text","data":"N KAJI"},{"name":"text","data":" , "},{"name":"text","data":"R HAYASHI"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Sputtering formation of P-type SnO thin-film transistors on glass toward oxide complimentary circuits"},{"name":"text","data":" . "},{"name":"text","data":"Applied Physics Letters"},{"name":"text","data":" , "},{"name":"text","data":"2010"},{"name":"text","data":" . "},{"name":"text","data":"97"},{"name":"text","data":" ( "},{"name":"text","data":"7"},{"name":"text","data":" ): "},{"name":"text","data":"072111"},{"name":"text","data":" "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1063/1.3478213"}],"href":"http://doi.org/10.1063/1.3478213"}},{"name":"text","data":"."}],"title":"Sputtering formation of P-type SnO thin-film transistors on glass toward oxide complimentary circuits"}]},{"id":"b7","label":"7","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"裴 智慧"},{"name":"text","data":" , "},{"name":"text","data":"秦 国轩"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"栅介质材料及尺寸对薄膜晶体管性能影响研究"},{"name":"text","data":" . "},{"name":"text","data":"南京大学学报:自然科学版"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" ."},{"name":"text","data":"55"},{"name":"text","data":" ( "},{"name":"text","data":"5"},{"name":"text","data":" ): "},{"name":"text","data":"740"},{"name":"text","data":" - "},{"name":"text","data":"749"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njdxxb201905005"}],"href":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njdxxb201905005"}},{"name":"text","data":"."}],"title":"栅介质材料及尺寸对薄膜晶体管性能影响研究"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"Z H FEI"},{"name":"text","data":" , "},{"name":"text","data":"G X QIN"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Investigation on the influence of gate dielectric material and size on thin-film transistors performance"},{"name":"text","data":" . "},{"name":"text","data":"Journal of Nanjing University:Natural Science"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"55"},{"name":"text","data":" ( "},{"name":"text","data":"5"},{"name":"text","data":" ): "},{"name":"text","data":"740"},{"name":"text","data":" - "},{"name":"text","data":"749"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njdxxb201905005"}],"href":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njdxxb201905005"}},{"name":"text","data":"."}],"title":"Investigation on the influence of gate dielectric material and size on thin-film transistors performance"}]},{"id":"b8","label":"8","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"陆 清茹"},{"name":"text","data":" , "},{"name":"text","data":"李 帆"},{"name":"text","data":" , "},{"name":"text","data":"黄 晓东"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"非晶铟镓锌氧化物薄膜晶体管的制备及其光敏特性研究"},{"name":"text","data":" . "},{"name":"text","data":"半导体光电"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"40"},{"name":"text","data":" ( "},{"name":"text","data":"4"},{"name":"text","data":" ): "},{"name":"text","data":"480"},{"name":"text","data":" - "},{"name":"text","data":"483"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtgd201904007"}],"href":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtgd201904007"}},{"name":"text","data":"."}],"title":"非晶铟镓锌氧化物薄膜晶体管的制备及其光敏特性研究"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"Q R LU"},{"name":"text","data":" , "},{"name":"text","data":"F LI"},{"name":"text","data":" , "},{"name":"text","data":"X D HUANG"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Fabrication and photosensitive properties of amorphous indium gallium zinc oxide thin film transistors"},{"name":"text","data":" . "},{"name":"text","data":"Semiconductor Optoelectronics"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"40"},{"name":"text","data":" ( "},{"name":"text","data":"4"},{"name":"text","data":" ): "},{"name":"text","data":"480"},{"name":"text","data":" - "},{"name":"text","data":"483"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtgd201904007"}],"href":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtgd201904007"}},{"name":"text","data":"."}],"title":"Fabrication and photosensitive properties of amorphous indium gallium zinc oxide thin film transistors"}]},{"id":"b9","label":"9","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"J S PARK"},{"name":"text","data":" , "},{"name":"text","data":"J KYHM"},{"name":"text","data":" , "},{"name":"text","data":"H H KIM"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Alternative patterning process for realization of large-area, full-color, active quantum dot display"},{"name":"text","data":" . "},{"name":"text","data":"Nano Letters"},{"name":"text","data":" , "},{"name":"text","data":"2016"},{"name":"text","data":" . "},{"name":"text","data":"16"},{"name":"text","data":" ( "},{"name":"text","data":"11"},{"name":"text","data":" ): "},{"name":"text","data":"6946"},{"name":"text","data":" - "},{"name":"text","data":"6953"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1021/acs.nanolett.6b03007"}],"href":"http://doi.org/10.1021/acs.nanolett.6b03007"}},{"name":"text","data":"."}],"title":"Alternative patterning process for realization of large-area, full-color, active quantum dot display"}]},{"id":"b10","label":"10","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"刘 翔"},{"name":"text","data":" , "},{"name":"text","data":"薛 建设"},{"name":"text","data":" , "},{"name":"text","data":"贾 勇"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"金属氧化物IGZO薄膜晶体管的最新研究进展"},{"name":"text","data":" . "},{"name":"text","data":"现代显示"},{"name":"text","data":" , "},{"name":"text","data":"2010"},{"name":"text","data":" . ( "},{"name":"text","data":"10"},{"name":"text","data":" ): "},{"name":"text","data":"28"},{"name":"text","data":" - "},{"name":"text","data":"32"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdxs201010008"}],"href":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdxs201010008"}},{"name":"text","data":"."}],"title":"金属氧化物IGZO薄膜晶体管的最新研究进展"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"X LIU"},{"name":"text","data":" , "},{"name":"text","data":"J S XUE"},{"name":"text","data":" , "},{"name":"text","data":"Y JIA"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"The recent research progress of amorphous indium gallium zinc oxide thin film transistors"},{"name":"text","data":" . "},{"name":"text","data":"Advanced Display"},{"name":"text","data":" , "},{"name":"text","data":"2010"},{"name":"text","data":" . ( "},{"name":"text","data":"10"},{"name":"text","data":" ): "},{"name":"text","data":"28"},{"name":"text","data":" - "},{"name":"text","data":"32"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdxs201010008"}],"href":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdxs201010008"}},{"name":"text","data":"."}],"title":"The recent research progress of amorphous indium gallium zinc oxide thin film transistors"}]},{"id":"b11","label":"11","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"K BEOM"},{"name":"text","data":" , "},{"name":"text","data":"P YANG"},{"name":"text","data":" , "},{"name":"text","data":"D PARK"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Single- and double-gate synaptic transistor with TaO"},{"name":"italic","data":[{"name":"sub","data":[{"name":"text","data":"x"}]}]},{"name":"text","data":" gate insulator and IGZO channel layer"},{"name":"text","data":" . "},{"name":"text","data":"Nanotechnology"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"30"},{"name":"text","data":" ( "},{"name":"text","data":"2"},{"name":"text","data":" ): "},{"name":"text","data":"025203"},{"name":"text","data":" "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1088/1361-6528/aae8d2"}],"href":"http://doi.org/10.1088/1361-6528/aae8d2"}},{"name":"text","data":"."}],"title":"Single- and double-gate synaptic transistor with TaOx gate insulator and IGZO channel layer"}]},{"id":"b12","label":"12","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"P B PILLAI"},{"name":"text","data":" , "},{"name":"text","data":"M M DE SOUZA"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Nanoionics-based three-terminal synaptic device using zinc oxide"},{"name":"text","data":" . "},{"name":"text","data":"ACS Applied Materials & Interfaces"},{"name":"text","data":" , "},{"name":"text","data":"2017"},{"name":"text","data":" . "},{"name":"text","data":"9"},{"name":"text","data":" ( "},{"name":"text","data":"2"},{"name":"text","data":" ): "},{"name":"text","data":"1609"},{"name":"text","data":" - "},{"name":"text","data":"1618"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b2e19782db5824fd40220e0b312921af"}],"href":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b2e19782db5824fd40220e0b312921af"}},{"name":"text","data":"."}],"title":"Nanoionics-based three-terminal synaptic device using zinc oxide"}]},{"id":"b13","label":"13","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"林 广庆"},{"name":"text","data":" , "},{"name":"text","data":"李 鹏"},{"name":"text","data":" , "},{"name":"text","data":"王 明晖"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"表面修饰制备高性能薄膜晶体管"},{"name":"text","data":" . "},{"name":"text","data":"液晶与显示"},{"name":"text","data":" , "},{"name":"text","data":"2013"},{"name":"text","data":" . "},{"name":"text","data":"28"},{"name":"text","data":" ( "},{"name":"text","data":"4"},{"name":"text","data":" ): "},{"name":"text","data":"490"},{"name":"text","data":" - "},{"name":"text","data":"494"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1696720&Fpath=&index=-1&l=zh"}],"href":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1696720&Fpath=&index=-1&l=zh"}},{"name":"text","data":"."}],"title":"表面修饰制备高性能薄膜晶体管"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"G Q LIN"},{"name":"text","data":" , "},{"name":"text","data":"P LI"},{"name":"text","data":" , "},{"name":"text","data":"M H WANG"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Preparation of high-performance organic thin-film transistor through surface modification"},{"name":"text","data":" . "},{"name":"text","data":"Chinese Journal of Liquid Crystals and Displays"},{"name":"text","data":" , "},{"name":"text","data":"2013"},{"name":"text","data":" . "},{"name":"text","data":"28"},{"name":"text","data":" ( "},{"name":"text","data":"4"},{"name":"text","data":" ): "},{"name":"text","data":"490"},{"name":"text","data":" - "},{"name":"text","data":"494"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1696720&Fpath=&index=-1&l=zh"}],"href":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1696720&Fpath=&index=-1&l=zh"}},{"name":"text","data":"."}],"title":"Preparation of high-performance organic thin-film transistor through surface modification"}]},{"id":"b14","label":"14","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"覃 金牛"},{"name":"text","data":" , "},{"name":"text","data":"温 喜章"},{"name":"text","data":" , "},{"name":"text","data":"冯 武昌"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"退火温度对ZnO薄膜晶体管电学性能的影响"},{"name":"text","data":" . "},{"name":"text","data":"深圳大学学报理工版"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"36"},{"name":"text","data":" ( "},{"name":"text","data":"4"},{"name":"text","data":" ): "},{"name":"text","data":"375"},{"name":"text","data":" - "},{"name":"text","data":"381"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.cqvip.com/Main/Detail.aspx?id=31278402"}],"href":"http://www.cqvip.com/Main/Detail.aspx?id=31278402"}},{"name":"text","data":"."}],"title":"退火温度对ZnO薄膜晶体管电学性能的影响"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"J N QIN"},{"name":"text","data":" , "},{"name":"text","data":"X Z WEN"},{"name":"text","data":" , "},{"name":"text","data":"W C FENG"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Effect of annealing temperature on the electrical properties of ZnO thin-film transistors"},{"name":"text","data":" . "},{"name":"text","data":"Journal of Shenzhen University Science and Engineering"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"36"},{"name":"text","data":" ( "},{"name":"text","data":"4"},{"name":"text","data":" ): "},{"name":"text","data":"375"},{"name":"text","data":" - "},{"name":"text","data":"381"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.cqvip.com/Main/Detail.aspx?id=31278402"}],"href":"http://www.cqvip.com/Main/Detail.aspx?id=31278402"}},{"name":"text","data":"."}],"title":"Effect of annealing temperature on the electrical properties of ZnO thin-film transistors"}]},{"id":"b15","label":"15","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"H PALNEEDI"},{"name":"text","data":" , "},{"name":"text","data":"J H PARK"},{"name":"text","data":" , "},{"name":"text","data":"D MAURYA"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Laser irradiation of metal oxide films and nanostructures:applications and advances"},{"name":"text","data":" . "},{"name":"text","data":"Advanced Materials"},{"name":"text","data":" , "},{"name":"text","data":"2018"},{"name":"text","data":" . "},{"name":"text","data":"30"},{"name":"text","data":" ( "},{"name":"text","data":"14"},{"name":"text","data":" ): "},{"name":"text","data":"1705148"},{"name":"text","data":" "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1002/adma.201705148"}],"href":"http://doi.org/10.1002/adma.201705148"}},{"name":"text","data":"."}],"title":"Laser irradiation of metal oxide films and nanostructures:applications and advances"}]},{"id":"b16","label":"16","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"胡 郁蓬"},{"name":"text","data":" , "},{"name":"text","data":"鲁 广昊"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"有机半导体薄膜空间电荷分布对晶体管性能影响的研究进展"},{"name":"text","data":" . "},{"name":"text","data":"应用化学"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"36"},{"name":"text","data":" ( "},{"name":"text","data":"8"},{"name":"text","data":" ): "},{"name":"text","data":"855"},{"name":"text","data":" - "},{"name":"text","data":"881"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyhx201908002"}],"href":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyhx201908002"}},{"name":"text","data":"."}],"title":"有机半导体薄膜空间电荷分布对晶体管性能影响的研究进展"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"Y P HU"},{"name":"text","data":" , "},{"name":"text","data":"G H LU"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Research progress on the effect of space charge distribution of organic semiconductor thin films on transistor performance"},{"name":"text","data":" . "},{"name":"text","data":"Chinese Journal of Applied Chemistry"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"36"},{"name":"text","data":" ( "},{"name":"text","data":"8"},{"name":"text","data":" ): "},{"name":"text","data":"855"},{"name":"text","data":" - "},{"name":"text","data":"881"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyhx201908002"}],"href":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyhx201908002"}},{"name":"text","data":"."}],"title":"Research progress on the effect of space charge distribution of organic semiconductor thin films on transistor performance"}]},{"id":"b17","label":"17","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"J P S BERMUNDO"},{"name":"text","data":" , "},{"name":"text","data":"Y ISHIKAWA"},{"name":"text","data":" , "},{"name":"text","data":"M N FUJⅡ"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Instantaneous semiconductor-to-conductor transformation of a transparent oxide semiconductor a-InGaZnO at 45℃"},{"name":"text","data":" . "},{"name":"text","data":"ACS Applied Materials & Interfaces"},{"name":"text","data":" , "},{"name":"text","data":"2018"},{"name":"text","data":" . "},{"name":"text","data":"10"},{"name":"text","data":" ( "},{"name":"text","data":"29"},{"name":"text","data":" ): "},{"name":"text","data":"24590"},{"name":"text","data":" - "},{"name":"text","data":"24597"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://europepmc.org/abstract/MED/29927571"}],"href":"http://europepmc.org/abstract/MED/29927571"}},{"name":"text","data":"."}],"title":"Instantaneous semiconductor-to-conductor transformation of a transparent oxide semiconductor a-InGaZnO at 45℃"}]},{"id":"b18","label":"18","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"郭 晓艳"},{"name":"text","data":" , "},{"name":"text","data":"程 晓琪"},{"name":"text","data":" , "},{"name":"text","data":"张 良良"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"text","data":", N-双(2-羟乙基)-2-氨基乙磺酸钠为扩链剂的磺酸型聚氨酯水凝胶制备及性能"},{"name":"text","data":" . "},{"name":"text","data":"应用化学"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"36"},{"name":"text","data":" ( "},{"name":"text","data":"6"},{"name":"text","data":" ): "},{"name":"text","data":"631"},{"name":"text","data":" - "},{"name":"text","data":"640"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.cnki.com.cn/Article/CJFDTotal-YYHX201906003.htm"}],"href":"http://www.cnki.com.cn/Article/CJFDTotal-YYHX201906003.htm"}},{"name":"text","data":"."}],"title":"N, N-双(2-羟乙基)-2-氨基乙磺酸钠为扩链剂的磺酸型聚氨酯水凝胶制备及性能"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"X Y GUO"},{"name":"text","data":" , "},{"name":"text","data":"X Q CHENG"},{"name":"text","data":" , "},{"name":"text","data":"L L ZHANG"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Preparation and properties of sulfonic waterborne polyurethane hydrogels with sodium "},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"text","data":", "},{"name":"italic","data":[{"name":"text","data":"N"}]},{"name":"text","data":"-Bis (2-hydroxyethyl)-2-aminoethane sulfonate as chain extender"},{"name":"text","data":" . "},{"name":"text","data":"Chinese Journal of Applied Chemistry"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"36"},{"name":"text","data":" ( "},{"name":"text","data":"6"},{"name":"text","data":" ): "},{"name":"text","data":"631"},{"name":"text","data":" - "},{"name":"text","data":"640"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.cnki.com.cn/Article/CJFDTotal-YYHX201906003.htm"}],"href":"http://www.cnki.com.cn/Article/CJFDTotal-YYHX201906003.htm"}},{"name":"text","data":"."}],"title":"Preparation and properties of sulfonic waterborne polyurethane hydrogels with sodium N, N-Bis (2-hydroxyethyl)-2-aminoethane sulfonate as chain extender"}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.37188/YJYXS20203511.1103","clc":[[{"name":"text","data":"TN321.5"}]],"dc":[],"publisherid":"yjyxs-35-11-1103","citeme":[],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"福建省教育厅中青年教师教育科研项目(No.JT180812);海峡两岸职业教育专项研究课题(No.FJJKHX17-072)"}]},{"lang":"en","text":[{"name":"text","data":"Supported by Education and Scientific Research Project for Young and Middle-aged Teachers of Education Department of Fujian Province (No.JT180812); Special Research for Vocational Education on Both Sides of the Taiwan Strait(No.FJJKHX17-072)"}]}],"history":{"received":"2020-04-25","revised":"2020-06-01","ppub":"2020-11-05","opub":"2021-10-11"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有©《液晶与显示》编辑部2020"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright ©2020 Chinese Journal of Liquid Crystals and Displays. All rights reserved."}],"type":"copyright"}],"year":"2020"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"液晶与显示","issue":"11","volume":"35","originalSource":[]}