{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"折射率匹配对绿光发光二极管微显示光学性能影响"}]},{"lang":"en","data":[{"name":"text","data":"Effect of refractive index matching on optical performance of green LED microdisplay"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"王","givenname":"磊","namestyle":"eastern","prefix":""},{"lang":"en","surname":"WANG","givenname":"Lei","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":["first-author"],"bio":[{"lang":"zh","text":["王磊(1996-), 男, 湖北孝感人, 硕士研究生, 2018年于湖北理工学院获得学士学位, 主要从事半导体显示方面的研究。E-mail:18327632338@163.com"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"王磊"}]},{"name":"text","data":"(1996-), 男, 湖北孝感人, 硕士研究生, 2018年于湖北理工学院获得学士学位, 主要从事半导体显示方面的研究。E-mail:"},{"name":"text","data":"18327632338@163.com"}]]}],"email":"18327632338@163.com","deceased":false},{"name":[{"lang":"zh","surname":"罗","givenname":"翔","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LUO","givenname":"Xiang","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"常","givenname":"佛青","namestyle":"eastern","prefix":""},{"lang":"en","surname":"CHANG","givenname":"Fo-qing","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"王","givenname":"晓楠","namestyle":"eastern","prefix":""},{"lang":"en","surname":"WANG","givenname":"Xiao-nan","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"刘","givenname":"苏阳","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LIU","givenname":"Su-yang","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"汤","givenname":"昊","namestyle":"eastern","prefix":""},{"lang":"en","surname":"TANG","givenname":"Hao","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"刘","givenname":"宏宇","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LIU","givenname":"Hong-yu","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"孙","givenname":"润光","namestyle":"eastern","prefix":""},{"lang":"en","surname":"SUN","givenname":"Run-guang","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":["corresp"],"corresp":[{"rid":"cor1","lang":"zh","text":"孙润光, E-mail:rgsun@ncu.edu.cn","data":[{"name":"text","data":"孙润光, E-mail:rgsun@ncu.edu.cn"}]}],"bio":[{"lang":"zh","text":["孙润光(1963-), 男, 山东烟台人, 博士, 教授, 1997年于东京大学获得博士学位, 主要从事半导体发光与显示等方面的研究与教学工作。E-mail:rgsun@ncu.edu.cn"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"孙润光"}]},{"name":"text","data":"(1963-), 男, 山东烟台人, 博士, 教授, 1997年于东京大学获得博士学位, 主要从事半导体发光与显示等方面的研究与教学工作。E-mail:"},{"name":"text","data":"rgsun@ncu.edu.cn"}]]}],"email":"rgsun@ncu.edu.cn","deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"","text":"南昌大学 材料科学与工程学院, 江西 南昌 330031","data":[{"name":"text","data":"南昌大学 材料科学与工程学院, 江西 南昌 330031"}]},{"lang":"en","label":"","text":"College of Material Science and Engineering, Nanchang University, Nanchang 330031, China","data":[{"name":"text","data":"College of Material Science and Engineering, Nanchang University, Nanchang 330031, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"设计了用于发光二极管(LED)微显示器折射率匹配层结构,可以提高LED微显示器的光学性能。倒装结构的LED微显示器出光面为蓝宝石(折射率约1.76),它和空气的折射率(约为1.0)相差较大,会有很大一部分光因为全反射而反射回器件内部被吸收,导致器件的光效率降低。本文通过涂敷折射率匹配层硅胶(折射率约1.41~1.53)的方法,改变器件表层的折射率使其和空气的折射率相匹配,增加光逃逸锥角,从而提高器件的光效率。结果表明涂敷硅胶可以提高光效率约25.75%,在涂敷硅胶基础上盖玻璃片(折射率约1.47)可提高光效率约32.78%,且硅胶涂敷前后器件的电学、光学、结温稳定性好。尽管增加的是侧方向的光通量,但是其光效率的增加为高效率LED微显示的实现提供了参考依据。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"The structure based on a refractive index matching layer on light emitting diode (LED) microdisplay is designed to improve its optical performance. The light-emitting surface of the flip-chip LED microdisplay device is a sapphire (refractive index about 1.76), which is significantly different from the refractive index of air (refractive index about 1.0). A large part of the light is reflected back to the internal of the device due to total reflection, resulting in low luminous efficiency. By coating a refractive index matching layer of silica gel (refractive indexes about 1.41~1.53), the surface layer of the device is changed to match the refractive index of the air to increase the light escape cone angle to improve the luminous efficiency of the device. The results show that:the application of the silica gel layer can improve the luminous efficiency by about 25.75%, and then covering a glass (refractive index about 1.47) on the silica gel layer can improve the luminous efficiency to about 32.78%, and the device has good electrical, optical and junction temperature stability before and after silicone coating. Although the increased light flux is in the lateral direction, this technique provides a reference for a realization of high-efficiency LED microdisplay."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"发光二极管"}],[{"name":"text","data":"微显示"}],[{"name":"text","data":"折射率匹配层"}],[{"name":"text","data":"光逃逸锥角"}],[{"name":"text","data":"光效率"}]]},{"lang":"en","data":[[{"name":"text","data":"LED"}],[{"name":"text","data":"microdisplay"}],[{"name":"text","data":"refractive index matching layer"}],[{"name":"text","data":"light escape cone angle"}],[{"name":"text","data":"luminous efficiency"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"近年来,随着人们对增强现实(AR)和便携式投影设备的需求日益渐涨,对显示技术提出了更高的要求,如高像素密度和高亮度"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"3","type":"bibr","rid":"b3","data":[{"name":"text","data":"3"}]}}],"rid":["b1","b2","b3"],"text":"1-3","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。LED微显示器以其高动态范围、高对比度、寿命长、体积小和功耗低等优点迅速发展"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"7","type":"bibr","rid":"b7","data":[{"name":"text","data":"7"}]}}],"rid":["b4","b5","b6","b7"],"text":"4-7","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。一般来说LED微显示器是指有效显示区对角线尺寸小于25.4 mm(1 in),单个像素尺寸小于50 μm的微型显示器件"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。LED微显示芯片的制作技术主要是LED微缩化和矩阵化技术,即在一个芯片上高密度集成的微尺寸LED阵列"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"理论上影响LED光提取效率的因素主要分为两个方面:一是由于光在半导体和空气界面因折射率差所引起的反射损失,二是由于半导体材料和LED电极材料对光的吸收,从而影响了器件的光效"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"10","type":"bibr","rid":"b10","data":[{"name":"text","data":"10"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。在材料的选择上,Ti/Al/Ni/Au等高反射率材料的使用,已尽可能使其对光的吸收达到最低"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"11","type":"bibr","rid":"b11","data":[{"name":"text","data":"11"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。因此,为了进一步增加LED微显示器的光提取效率,我们着力于从界面反射出发,通过涂敷折射率匹配层增加光逃逸锥角,进而增加器件的光效"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"12","type":"bibr","rid":"b12","data":[{"name":"text","data":"12"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。目前已通过表面粗化、倒装芯片、图形化衬底、纳米结构表面、分布式布拉格反射器等技术来增加LED的光提取效率,但是以上增加光提取效率的方法多为照明领域且制作工艺复杂,用于显示领域来增加光提取效率的研究方法较少"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"13","type":"bibr","rid":"b13","data":[{"name":"text","data":"13"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"17","type":"bibr","rid":"b17","data":[{"name":"text","data":"17"}]}}],"rid":["b13","b14","b15","b16","b17"],"text":"13-17","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。本文通过涂敷的方法研究了折射率匹配层对LED微显示器光学性能的影响。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"实验"}],"level":"1","id":"s2"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.1"}],"title":[{"name":"text","data":"器件制备"}],"level":"2","id":"s2-1"}},{"name":"p","data":[{"name":"text","data":"本研究中用于器件制备的外延片为101.6 mm(4 in)蓝宝石衬底绿光(525 nm)InGaN/GaN多量子阱结构, 其各外延层结构如"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"所示。绝缘透明的双抛蓝宝石衬底为器件提供了一个理想的显示平面,"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"展示了该LED微显示器的结构剖面图。首先通过电感耦合等离子体(ICP)刻蚀定义出单像素区域,其中像素点距20 μm,台面尺寸14 μm,然后采用电子束蒸发(EBE)在晶圆上沉积Ni/Au/Ni/Au薄膜形成P寻址电极、N层布线和公共负电极,将公共电极设计成网状结构,使电流均匀流过每个像素,这样提高了器件电流均匀性。随后沉积SiO"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"钝化层,减少单个像素侧壁引起的漏电流,之后通过反应离子刻蚀(RIE)形成过孔,在每个像素P寻址电极和公共电极的顶部沉积Au凸点,然后通过倒装焊机(FC150)将其与驱动IC的铟柱键合在一起,制作了10.67 mm(0.42 in)、分辨率为480×270的阵列,最后通过West Bond引线机将其与柔性印刷线路板(FPCB)连接在一起,封装样品如"},{"name":"xref","data":{"text":"图 3","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"衬底各外延层结构"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"Epitaxial layer structure of the substrate"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905140&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905140&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905140&type=middle"}]}},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"LED微显示器结构剖面图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"Structural profile of LED microdisplay"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905146&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905146&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905146&type=middle"}]}},{"name":"fig","data":{"id":"Figure3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"封装的LED微显示器示意图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 3"}],"title":[{"name":"text","data":"Schematic of encapsulated LED microdisplay"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905150&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905150&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905150&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.2"}],"title":[{"name":"text","data":"器件折射率匹配层涂敷"}],"level":"2","id":"s2-2"}},{"name":"p","data":[{"name":"text","data":"实验分为两组。A组实验先测试样品的光效率;之后在样品的表面刮涂一层硅胶(卡夫特K-705 RTV硅橡胶折射率为1.45),覆盖整个发光区,用玻璃棒碾平,确保覆盖的硅胶中没有小气泡存在,在室温下将样品静置8 h以上,待硅胶无流动后测量样品的光效率;随后刮涂一层薄硅胶层在肖特BF33双抛玻璃片(厚度为300 μm)上,将玻璃片和器件粘合在一起,确保玻璃片和硅胶之间没有小气泡存在,待固化后再次测量其光效率。B组实验首先在器件的发光区周围(N line布线周围)封一圈黑色树脂(DOW CORNING SE 9187L粘合剂),随后按照A组实验顺序和步骤重复进行实验。整个实验过程在常温、常湿条件下进行。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.3"}],"title":[{"name":"text","data":"器件性能表征"}],"level":"2","id":"s2-3"}},{"name":"p","data":[{"name":"text","data":"实验首先用显微镜(KEYENCE VHX-600E)观察了样品的显微结构,单个像素发光区半径为5.15 μm,单个像素电流扩展区域大小为14.50 μm,器件测试区的有效发光区面积为1.08 mm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":",如"},{"name":"xref","data":{"text":"图 4","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4"}]}},{"name":"text","data":"所示。采用积分球测试仪(300积分球)、光色电综合测试仪(ZWL-600-M6)和快速光谱分析系统(600光谱仪)对样品的光效率进行测试,采用计算机控制可编程的Keithley 2611A源表和SpectraScan PR-650亮度计对样品的亮度进行测试,整个测试过程在常温、常湿、无外部光照条件下完成,测试电流范围为1~50 mA。采用Keithley 2611A源表、红外测温仪(GM300)和微电脑控制恒温加热板(946C)测量了样品涂敷硅胶前后结温的变化。"}]},{"name":"fig","data":{"id":"Figure4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"text","data":"从蓝宝石面观察的LED微显示器单个点亮像素(×5 000)"}]},{"lang":"en","label":[{"name":"text","data":"Fig 4"}],"title":[{"name":"text","data":"Single alight pixel (×5 000) of LED microdisplay viewed from sapphire surface"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905155&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905155&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905155&type=middle"}]}}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"结果与讨论"}],"level":"1","id":"s3"}},{"name":"p","data":[{"name":"text","data":"本文主要目的是研究折射率匹配层对绿光LED微显示器光学性能的影响。在已封装器件上涂敷硅胶层,然后盖玻璃片。InGaN/GaN绿光microLED的衬底为蓝宝石,其折射率约1.76,而空气的折射率在常温下约1.0,由菲涅尔定律可知,光从光密介质进入光疏介质时会发生全反射"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"18","type":"bibr","rid":"b18","data":[{"name":"text","data":"18"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。倒装结构的InGaN/GaN绿光microLED出光面为蓝宝石,从半导体内部产生的光子,首先会经过各外延层到达器件与空气界面,此时由于两者的折射率相差较大,大多数的光子会因为全反射而回到内部,最终被器件所吸收"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"19","type":"bibr","rid":"b19","data":[{"name":"text","data":"19"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"根据临界角公式:"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"1"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905160&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905160&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905160&type=middle"}}}],"id":"yjyxs-35-9-900-E1"}}]},{"name":"p","data":[{"name":"text","data":"式中:"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"text","data":"为界面处的全反射临界角,"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"为空气的折射率,"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"为材料的折射率。假设从有源区产生的光为一点光源,如"},{"name":"xref","data":{"text":"图 5(a)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(a)"}]}},{"name":"text","data":"所示,沿半导体空气界面法线方向发射的光可以直接从半导体中逃逸出来,若入射光角度超过了全内反射临界角,那么光就会被反射回器件内部被吸收。空气界面处半导体材料折射率的不同会导致逃逸光锥角不同,从而改变器件的光效率。带入空气和蓝宝石的折射率,得到界面处的临界角"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"=34.62°,即只有位于临界角"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"=34.62°半角内的入射光才能出射到器件外。当在器件的表面涂敷折射率匹配层硅胶层之后,器件和空气的接触面变为硅胶与空气界面,因硅胶的折射率为1.45,带入式(1),得到界面处的临界角"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"=43.54°,即只有位于临界角"},{"name":"italic","data":[{"name":"text","data":"θ"}]},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"=43.54°半角内的入射光才能出射到器件外,涂敷硅胶前后光逃逸锥角如"},{"name":"xref","data":{"text":"图 5(b)","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5(b)"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"(a) 界面处全反射示意图;(b)涂敷前后光逃逸锥角示意图(红线表示涂敷后,蓝线表示涂敷前)。"}]},{"lang":"en","label":[{"name":"text","data":"Fig 5"}],"title":[{"name":"text","data":"(a)Schematic diagram of total reflection at the interface; (b) Schematic diagram of light escape cone angle before and after coating (The red line is after and the blue line is before)."}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905165&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905165&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905165&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"经过以上分析可知,涂敷折射率匹配层硅胶层之后,逃逸光锥角从34.62°变为了43.54°,即涂敷硅胶之后器件的光效率理论上会提高约25.94%。"}]},{"name":"p","data":[{"name":"xref","data":{"text":"图 6(a)","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6(a)"}]}},{"name":"text","data":"为A组实验电流密度-光效率曲线,随着电流密度增加,光效率呈先升后降趋势。可以看出样品在未处理时峰值光效的电流密度约为1 A/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":",最大光效率约为27 lm/W。样品刮涂硅胶处理后,其峰值光效率变化明显,此时最大光效率约35 lm/W,相比于未涂敷硅胶的样品光效率增加29.63%。在刮涂硅胶之后,继续在样品表面覆盖一层玻璃片,此时最大光效率约36 lm/W,在涂硅胶的基础上有较小提升,此时因玻璃的折射率比硅胶大,硅胶和玻璃界面不会发生全反射,猜测是由于多光束干涉作用使其光效率增加"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"20","type":"bibr","rid":"b20","data":[{"name":"text","data":"20"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",相比于未涂敷硅胶时光效率提升37.04%。根据图像可以直观地看到涂敷硅胶对样品光效率确有提升,且提升较明显,通过涂敷折射率匹配层硅胶层,增强了界面处的光耦合作用,大幅提高了样品的光效率。根据测试数据得到"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":"(为使结果更可靠,去掉小电流1~3 mA时的数据),涂敷硅胶光效率提升平均值约25.75%,继续盖玻璃片后相比未处理前提升平均值约32.78%。"}]},{"name":"fig","data":{"id":"Figure6","caption":[{"lang":"zh","label":[{"name":"text","data":"图6"}],"title":[{"name":"text","data":"试样处理前后电流密度-光效率曲线。(a)未封黑色树脂;(b)封黑色树脂。"}]},{"lang":"en","label":[{"name":"text","data":"Fig 6"}],"title":[{"name":"text","data":"Current density-luminous efficiency curves before and after treatment. (a) Unsealed by black epoxy; (b) Sealed by black epoxy."}]}],"subcaption":[],"note":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"(注:Untreated表示未处理;Epoxy表示封黑色树脂;Coating表示涂敷硅胶;Coating and Glass表示硅胶上盖玻璃片)"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"(Note: Untreated means unprocessed; Epoxy means sealed by black epoxy; Coating means coating silicone; Coating and Glass means cover glass with silicone)"}]}]}],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905171&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905171&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905171&type=middle"}]}},{"name":"table","data":{"id":"Table1","caption":[{"lang":"zh","label":[{"name":"text","data":"表1"}],"title":[{"name":"text","data":"未封树脂测试实验结果"}]},{"lang":"en","label":[{"name":"text","data":"Table 1"}],"title":[{"name":"text","data":"Test results of unsealed epoxy (lm·W"},{"name":"sup","data":[{"name":"text","data":"-1"}]},{"name":"text","data":")"}]}],"note":[],"table":[{"head":[[{"align":"center","data":[{"name":"text","data":"实验次数"}]},{"align":"center","data":[{"name":"text","data":"最大值"}]},{"align":"center","data":[{"name":"text","data":"最小值"}]},{"align":"center","data":[{"name":"text","data":"平均值"}]},{"align":"center","data":[{"name":"text","data":"平均提升"}]}]],"body":[[{"align":"center","data":[{"name":"text","data":"未涂胶1"}]},{"align":"center","data":[{"name":"text","data":"26.519"}]},{"align":"center","data":[{"name":"text","data":"18.013"}]},{"align":"center","data":[{"name":"text","data":"22.497"}]},{"align":"center","data":[]}],[{"align":"center","data":[{"name":"text","data":"未涂胶2"}]},{"align":"center","data":[{"name":"text","data":"27.148"}]},{"align":"center","data":[{"name":"text","data":"18.201"}]},{"align":"center","data":[{"name":"text","data":"22.757"}]},{"align":"center","data":[]}],[{"align":"center","data":[{"name":"text","data":"未涂胶3"}]},{"align":"center","data":[{"name":"text","data":"27.148"}]},{"align":"center","data":[{"name":"text","data":"18.175"}]},{"align":"center","data":[{"name":"text","data":"22.733"}]},{"align":"center","data":[]}],[{"align":"center","data":[{"name":"text","data":"涂胶1"}]},{"align":"center","data":[{"name":"text","data":"33.963"}]},{"align":"center","data":[{"name":"text","data":"22.546"}]},{"align":"center","data":[{"name":"text","data":"28.313"}]},{"align":"center","data":[]}],[{"align":"center","data":[{"name":"text","data":"涂胶2"}]},{"align":"center","data":[{"name":"text","data":"34.519"}]},{"align":"center","data":[{"name":"text","data":"22.691"}]},{"align":"center","data":[{"name":"text","data":"28.733"}]},{"align":"center","data":[]}],[{"align":"center","data":[{"name":"text","data":"涂胶3"}]},{"align":"center","data":[{"name":"text","data":"35.037"}]},{"align":"center","data":[{"name":"text","data":"22.288"}]},{"align":"center","data":[{"name":"text","data":"28.449"}]},{"align":"center","data":[{"name":"text","data":"25.75%"}]}],[{"align":"center","data":[{"name":"text","data":"盖玻璃1"}]},{"align":"center","data":[{"name":"text","data":"35.750"}]},{"align":"center","data":[{"name":"text","data":"23.908"}]},{"align":"center","data":[{"name":"text","data":"29.931"}]},{"align":"center","data":[]}],[{"align":"center","data":[{"name":"text","data":"盖玻璃2"}]},{"align":"center","data":[{"name":"text","data":"36.042"}]},{"align":"center","data":[{"name":"text","data":"23.075"}]},{"align":"center","data":[{"name":"text","data":"29.910"}]},{"align":"center","data":[{"name":"text","data":"32.78%"}]}],[{"align":"center","data":[{"name":"text","data":"盖玻璃3"}]},{"align":"center","data":[{"name":"text","data":"36.333"}]},{"align":"center","data":[{"name":"text","data":"24.171"}]},{"align":"center","data":[{"name":"text","data":"30.429"}]},{"align":"center","data":[]}]],"foot":[]}]}},{"name":"p","data":[{"name":"xref","data":{"text":"图 6(b)","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6(b)"}]}},{"name":"text","data":"为B组实验电流密度-光效率曲线。封黑色树脂后样品峰值光效率仍为27 lm/W,与"},{"name":"xref","data":{"text":"图 6(a)","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6(a)"}]}},{"name":"text","data":"未修饰时峰值光效一致,且两者曲线的上升下降趋势一致,说明制作的LED微显示器从内部出射到器件外的光集中在正方向上,侧方向上发出的光很少。样品刮涂硅胶处理之后峰值光效率约30 lm/W,相比于只封黑色树脂时提升11.11%,对照未封黑色树脂曲线,其提升较少,主要是由于黑色树脂吸收了部分光,导致最终发出到器件外的光变少。在硅胶基础上盖玻璃片后峰值光效率约26 lm/W,与只封黑色树脂时相比反而是降低了,是因为硅胶具有流动性,实验中为自然条件下固化,未封黑色树脂时,盖玻璃片向下按压会使硅胶充分填充,但因其流动性和分子间作用力,硅胶会向中心靠拢,将玻璃往上推,待固化后,会在玻璃和硅胶间留下间隙,未封黑色树脂时,不影响光从侧方向发出;但封黑色树脂后,此时硅胶和玻璃间的间隙,相当于多了两层界面,硅胶/空气界面与空气/玻璃界面,在界面处会发生反射和折射等现象,造成光损失,同时因为黑色树脂的存在,反射到树脂的光会被吸收,导致光效率进一步降低。根据图像可以直观地看出在封树脂后涂敷硅胶光效率仍有提升,但在盖玻璃片后反而下降,与只封树脂时的曲线相比略有降低,说明涂敷硅胶之后界面处的光耦合作用仅提高了侧方向上的光通量,对正方向上的光通量没有影响。根据测试数据得到"},{"name":"xref","data":{"text":"表 2","type":"table","rid":"Table2","data":[{"name":"text","data":"表 2"}]}},{"name":"text","data":"(为了使结果更可靠,去掉小电流1~3 mA时的数据),封树脂后涂敷硅胶光效率提升平均值约7.49%,继续盖玻璃片相比只封树脂的光效率降低平均值约2.25%。"}]},{"name":"table","data":{"id":"Table2","caption":[{"lang":"zh","label":[{"name":"text","data":"表2"}],"title":[{"name":"text","data":"封树脂后测试实验结果"}]},{"lang":"en","label":[{"name":"text","data":"Table 2"}],"title":[{"name":"text","data":"Test results after sealing epoxy (lm·W"},{"name":"sup","data":[{"name":"text","data":"-1"}]},{"name":"text","data":")"}]}],"note":[],"table":[{"head":[[{"align":"center","data":[{"name":"text","data":"实验次数"}]},{"align":"center","data":[{"name":"text","data":"最大值"}]},{"align":"center","data":[{"name":"text","data":"最小值"}]},{"align":"center","data":[{"name":"text","data":"平均值"}]},{"align":"center","data":[{"name":"text","data":"平均提升"}]}]],"body":[[{"align":"center","data":[{"name":"text","data":"未涂胶1"}]},{"align":"center","data":[{"name":"text","data":"27.083"}]},{"align":"center","data":[{"name":"text","data":"17.740"}]},{"align":"center","data":[{"name":"text","data":"22.433"}]},{"align":"center","data":[]}],[{"align":"center","data":[{"name":"text","data":"未涂胶2"}]},{"align":"center","data":[{"name":"text","data":"27.105"}]},{"align":"center","data":[{"name":"text","data":"17.827"}]},{"align":"center","data":[{"name":"text","data":"22.610"}]},{"align":"center","data":[]}],[{"align":"center","data":[{"name":"text","data":"未涂胶3"}]},{"align":"center","data":[{"name":"text","data":"27.211"}]},{"align":"center","data":[{"name":"text","data":"17.867"}]},{"align":"center","data":[{"name":"text","data":"22.659"}]},{"align":"center","data":[]}],[{"align":"center","data":[{"name":"text","data":"涂胶1"}]},{"align":"center","data":[{"name":"text","data":"29.842"}]},{"align":"center","data":[{"name":"text","data":"17.969"}]},{"align":"center","data":[{"name":"text","data":"24.199"}]},{"align":"center","data":[]}],[{"align":"center","data":[{"name":"text","data":"涂胶2"}]},{"align":"center","data":[{"name":"text","data":"29.947"}]},{"align":"center","data":[{"name":"text","data":"18.779"}]},{"align":"center","data":[{"name":"text","data":"24.238"}]},{"align":"center","data":[]}],[{"align":"center","data":[{"name":"text","data":"涂胶3"}]},{"align":"center","data":[{"name":"text","data":"30.211"}]},{"align":"center","data":[{"name":"text","data":"18.812"}]},{"align":"center","data":[{"name":"text","data":"24.334"}]},{"align":"center","data":[{"name":"text","data":"7.49%"}]}],[{"align":"center","data":[{"name":"text","data":"盖玻璃1"}]},{"align":"center","data":[{"name":"text","data":"26.458"}]},{"align":"center","data":[{"name":"text","data":"17.365"}]},{"align":"center","data":[{"name":"text","data":"21.948"}]},{"align":"center","data":[]}],[{"align":"center","data":[{"name":"text","data":"盖玻璃2"}]},{"align":"center","data":[{"name":"text","data":"26.667"}]},{"align":"center","data":[{"name":"text","data":"17.412"}]},{"align":"center","data":[{"name":"text","data":"22.042"}]},{"align":"center","data":[{"name":"text","data":"-2.25%"}]}],[{"align":"center","data":[{"name":"text","data":"盖玻璃3"}]},{"align":"center","data":[{"name":"text","data":"26.958"}]},{"align":"center","data":[{"name":"text","data":"17.568"}]},{"align":"center","data":[{"name":"text","data":"22.188"}]},{"align":"center","data":[]}]],"foot":[]}]}},{"name":"p","data":[{"name":"xref","data":{"text":"图 7","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7"}]}},{"name":"text","data":"为A组实验亮度-电流曲线,从图中可以看出样品在处理前后其亮度基本保持不变,在15~20 mA之间。所测亮度有一波动点,主要是因为亮度计量程最多到10 000 cd/m"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":",在亮度计镜头前添加衰减片,从而导致了亮度出现波动。实验测试环境为常温常湿,且都有重复实验,测试数据多组,综合涂敷硅胶前后的光效-电流密度曲线和亮度-电流曲线可知,涂敷硅胶处理前后测量曲线基本一致,无上下明显波动,可知器件在正常环境、正常工作电流下光效率和亮度稳定。器件峰值光效率电流密度约为1 A/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":",对应电流约为13 mA、亮度约为8 000 cd/m"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"。根据"},{"name":"xref","data":{"text":"图 6","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6"}]}},{"name":"text","data":"、"},{"name":"xref","data":{"text":"7","type":"fig","rid":"Figure7","data":[{"name":"text","data":"7"}]}},{"name":"text","data":"可知,涂敷硅胶后由于界面处折射率发生改变,增加了界面处的耦合光效,使器件的光效率提升较大,但是其增加的仅是侧方向上的光通量,并没有使器件正方向上的光通量增加。"}]},{"name":"fig","data":{"id":"Figure7","caption":[{"lang":"zh","label":[{"name":"text","data":"图7"}],"title":[{"name":"text","data":"样品亮度-电流曲线"}]},{"lang":"en","label":[{"name":"text","data":"Fig 7"}],"title":[{"name":"text","data":"Luminance-current curves of the samples"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905175&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905175&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905175&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"LED微显示器电流的变化,会引起器件结温的变化,在恒流驱动条件下,由于LED芯片到环境的热阻是恒定的,故驱动电流引起的结温温升与环境的温差近似为一恒定值,可以用环境的温差(热板的温差)来代替LED的结温温差,正向压降和结温的关系"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"21","type":"bibr","rid":"b21","data":[{"name":"text","data":"21"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"22","type":"bibr","rid":"b22","data":[{"name":"text","data":"22"}]}}],"rid":["b21","b22"],"text":"21-22","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":":"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"2"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905177&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905177&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905177&type=middle"}}}],"id":"yjyxs-35-9-900-E2"}}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"3"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905180&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905180&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905180&type=middle"}}}],"id":"yjyxs-35-9-900-E3"}}]},{"name":"p","data":[{"name":"text","data":"式(2)中:"},{"name":"italic","data":[{"name":"text","data":"T"}]},{"name":"sub","data":[{"name":"text","data":"j"}]},{"name":"text","data":"表示结温,"},{"name":"italic","data":[{"name":"text","data":"T"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"为初始结温即环境温度,"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"为对应初始正向电压,"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"f"}]},{"name":"text","data":"表示不同环境温度下正向电压,"},{"name":"italic","data":[{"name":"text","data":"K"}]},{"name":"text","data":"为电压温度系数。式(3)中:"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"、"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"分别为环境温度"},{"name":"italic","data":[{"name":"text","data":"T"}]},{"name":"sub","data":[{"name":"text","data":"0"}]},{"name":"text","data":"、"},{"name":"italic","data":[{"name":"text","data":"T"}]},{"name":"sub","data":[{"name":"text","data":"1"}]},{"name":"text","data":"下的正向电压。分别测量了热板温度为50,60,70,80,90,100 ℃,电流恒定为30 mA,涂敷硅胶前后温度稳定下的"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"f"}]},{"name":"text","data":"。为使温度稳定,在每个环境温度下等待20 min以达到热平衡,绘制了"},{"name":"italic","data":[{"name":"text","data":"V"}]},{"name":"sub","data":[{"name":"text","data":"f"}]},{"name":"text","data":"-"},{"name":"italic","data":[{"name":"text","data":"T"}]},{"name":"text","data":"曲线,如"},{"name":"xref","data":{"text":"图 8","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8"}]}},{"name":"text","data":"所示,对曲线进行了线性拟合,其拟合直线斜率的倒数即为温度系数"},{"name":"italic","data":[{"name":"text","data":"K"}]},{"name":"text","data":"。"}]},{"name":"fig","data":{"id":"Figure8","caption":[{"lang":"zh","label":[{"name":"text","data":"图8"}],"title":[{"name":"text","data":"恒流驱动,涂敷硅胶前后器件正向电压与结温的关系。"}]},{"lang":"en","label":[{"name":"text","data":"Fig 8"}],"title":[{"name":"text","data":"Relationship between forward voltage and junction temperature of device before and after the silicone coating under constant current driving"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905181&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905181&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=20905181&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"从图中可以看出,两条曲线的斜率相差较小,根据线性拟合结果,得到涂敷硅胶前后的温度系数"},{"name":"italic","data":[{"name":"text","data":"K"}]},{"name":"text","data":"分别为-0.059 2 mV/℃、-0.052 4 mV/℃,"},{"name":"italic","data":[{"name":"text","data":"R"}]},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"都为0.97。由此可知涂敷硅胶前后器件的结温变化不明显,相同电压下最大结温温差约7.5 ℃,器件在正常工作条件下,不影响硅胶的使用性(硅胶使用温度范围-60~200 ℃),同时其结温的稳定性也说明了器件在涂敷硅胶前后的电学稳定性好。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"结论"}],"level":"1","id":"s4"}},{"name":"p","data":[{"name":"text","data":"通过一种简单易行的方法提高了绿光LED微显示器的光学性能。通过涂敷折射率匹配硅胶层,改变了器件和空气界面处的折射率,增加了光逃逸锥角,使耦合到器件外的光增加,进而增加器件的光效率,涂敷硅胶后光效率提升平均值约25.75%,和理论值相近。但是其增加的仅是侧方向上的光通量,对于器件正方向上的光通量没有提升,而显示领域需要的是正方向上的光而避免侧方向上的光,否则会出现串扰。根据光效率、亮度曲线以及结温的稳定性可知,器件涂敷硅胶后的光学稳定性和电学稳定性好。器件涂敷硅胶后其光效率的增加为高效率LED的实现提供了参考依据。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"Y G HUANG"},{"name":"text","data":" , "},{"name":"text","data":"G J TAN"},{"name":"text","data":" , "},{"name":"text","data":"F W GOU"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Prospects and challenges of mini-LED and micro-LED displays"},{"name":"text","data":" . "},{"name":"text","data":"Journal of the Society for Information Display"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"27"},{"name":"text","data":" ( "},{"name":"text","data":"7"},{"name":"text","data":" ): "},{"name":"text","data":"387"},{"name":"text","data":" - "},{"name":"text","data":"401"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1002/jsid.760"}],"href":"http://doi.org/10.1002/jsid.760"}},{"name":"text","data":"."}],"title":"Prospects and challenges of mini-LED and micro-LED displays"}]},{"id":"b2","label":"2","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"L ZHANG"},{"name":"text","data":" , "},{"name":"text","data":"F OU"},{"name":"text","data":" , "},{"name":"text","data":"W C CHONG"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Wafer-scale monolithic hybrid integration of Si-based IC and Ⅲ-Ⅴ epi-layers-a mass manufacturable approach for active matrix micro-LED micro-displays"},{"name":"text","data":" . "},{"name":"text","data":"Journal of the Society for Information Display"},{"name":"text","data":" , "},{"name":"text","data":"2018"},{"name":"text","data":" . "},{"name":"text","data":"26"},{"name":"text","data":" ( "},{"name":"text","data":"3"},{"name":"text","data":" ): "},{"name":"text","data":"137"},{"name":"text","data":" - "},{"name":"text","data":"145"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1002/jsid.649"}],"href":"http://doi.org/10.1002/jsid.649"}},{"name":"text","data":"."}],"title":"Wafer-scale monolithic hybrid integration of Si-based IC and Ⅲ-Ⅴ epi-layers-a mass manufacturable approach for active matrix micro-LED micro-displays"}]},{"id":"b3","label":"3","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"S NAKAMITSU"},{"name":"text","data":" , "},{"name":"text","data":"H ITO"},{"name":"text","data":" , "},{"name":"text","data":"T SUZUKI"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"News Paper:high PPI micro LED display for small and medium size"},{"name":"text","data":" . "},{"name":"text","data":"SID Symposium Digest of Technical Papers"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"50"},{"name":"text","data":" ( "},{"name":"text","data":"1"},{"name":"text","data":" ): "},{"name":"text","data":"137"},{"name":"text","data":" - "},{"name":"text","data":"140"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1002/sdtp.12874"}],"href":"http://doi.org/10.1002/sdtp.12874"}},{"name":"text","data":"."}],"title":"News Paper:high PPI micro LED display for small and medium size"}]},{"id":"b4","label":"4","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"郑 泽平"},{"name":"text","data":" , "},{"name":"text","data":"林 志贤"},{"name":"text","data":" , "},{"name":"text","data":"叶 芸"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"非转移与非键合的高密度Micro-LED显示器的设计与实现"},{"name":"text","data":" . "},{"name":"text","data":"半导体光电"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"40"},{"name":"text","data":" ( "},{"name":"text","data":"1"},{"name":"text","data":" ): "},{"name":"text","data":"42"},{"name":"text","data":" - "},{"name":"text","data":"47"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtgd201901009"}],"href":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtgd201901009"}},{"name":"text","data":"."}],"title":"非转移与非键合的高密度Micro-LED显示器的设计与实现"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"Z P ZHENG"},{"name":"text","data":" , "},{"name":"text","data":"Z X LIN"},{"name":"text","data":" , "},{"name":"text","data":"Y YE"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Design and implementation of non-transferred and non-bonded high-density micro-LED displays"},{"name":"text","data":" . "},{"name":"text","data":"Semiconductor Optoelectronics"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"40"},{"name":"text","data":" ( "},{"name":"text","data":"1"},{"name":"text","data":" ): "},{"name":"text","data":"42"},{"name":"text","data":" - "},{"name":"text","data":"47"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtgd201901009"}],"href":"http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtgd201901009"}},{"name":"text","data":"."}],"title":"Design and implementation of non-transferred and non-bonded high-density micro-LED displays"}]},{"id":"b5","label":"5","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"C C LI"},{"name":"text","data":" , "},{"name":"text","data":"J L ZHAN"},{"name":"text","data":" , "},{"name":"text","data":"Z Z CHEN"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Operating behavior of micro-LEDs on a GaN substrate at ultrahigh injection current densities"},{"name":"text","data":" . "},{"name":"text","data":"Optics Express"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"27"},{"name":"text","data":" ( "},{"name":"text","data":"16"},{"name":"text","data":" ): "},{"name":"text","data":"A1146"},{"name":"text","data":" - "},{"name":"text","data":"A1155"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1364/OE.27.0A1146"}],"href":"http://doi.org/10.1364/OE.27.0A1146"}},{"name":"text","data":"."}],"title":"Operating behavior of micro-LEDs on a GaN substrate at ultrahigh injection current densities"}]},{"id":"b6","label":"6","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"V W LEE"},{"name":"text","data":" , "},{"name":"text","data":"N TWU"},{"name":"text","data":" , "},{"name":"text","data":"I KYMISSIS"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Micro-LED technologies and applications"},{"name":"text","data":" . "},{"name":"text","data":"Information Display"},{"name":"text","data":" , "},{"name":"text","data":"2016"},{"name":"text","data":" . "},{"name":"text","data":"32"},{"name":"text","data":" ( "},{"name":"text","data":"6"},{"name":"text","data":" ): "},{"name":"text","data":"16"},{"name":"text","data":" - "},{"name":"text","data":"23"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1002/j.2637-496X.2016.tb00949.x"}],"href":"http://doi.org/10.1002/j.2637-496X.2016.tb00949.x"}},{"name":"text","data":"."}],"title":"Micro-LED technologies and applications"}]},{"id":"b7","label":"7","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"Y LI"},{"name":"text","data":" , "},{"name":"text","data":"J TAO"},{"name":"text","data":" , "},{"name":"text","data":"Y Z ZHAO"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"48×48 pixelated addressable full-color micro display based on flip-chip micro LEDs"},{"name":"text","data":" . "},{"name":"text","data":"Applied Optics"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"58"},{"name":"text","data":" ( "},{"name":"text","data":"31"},{"name":"text","data":" ): "},{"name":"text","data":"8383"},{"name":"text","data":" - "},{"name":"text","data":"8389"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1364/AO.58.008383"}],"href":"http://doi.org/10.1364/AO.58.008383"}},{"name":"text","data":"."}],"title":"48×48 pixelated addressable full-color micro display based on flip-chip micro LEDs"}]},{"id":"b8","label":"8","citation":[{"lang":"en","text":[{"name":"p","data":[{"name":"text","data":"CHOI H W, JEON C W, DAWSON M D, "},{"name":"italic","data":[{"name":"text","data":"et al."}]},{"name":"text","data":" Efficient GaN-based micro-LED arrays[C]//"},{"name":"italic","data":[{"name":"text","data":"Proceedings of Materials Research Society Symposium."}]},{"name":"text","data":" Warrendale, PA: Materials Research Society, 2002: 433-438."}]}]}]},{"id":"b9","label":"9","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"F OU"},{"name":"text","data":" , "},{"name":"text","data":"W C CHONG"},{"name":"text","data":" , "},{"name":"text","data":"Q C XU"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Monochromatic active matrix micro-LED micro-displays with> 5, 000 dpi pixel density fabricated using monolithic hybrid integration process"},{"name":"text","data":" . "},{"name":"text","data":"SID Symposium Digest of Technical Papers"},{"name":"text","data":" , "},{"name":"text","data":"2018"},{"name":"text","data":" . "},{"name":"text","data":"49"},{"name":"text","data":" ( "},{"name":"text","data":"1"},{"name":"text","data":" ): "},{"name":"text","data":"1677"},{"name":"text","data":" - "},{"name":"text","data":"1680"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1002/sdtp.12309"}],"href":"http://doi.org/10.1002/sdtp.12309"}},{"name":"text","data":"."}],"title":"Monochromatic active matrix micro-LED micro-displays with> 5, 000 dpi pixel density fabricated using monolithic hybrid integration process"}]},{"id":"b10","label":"10","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"李 伟"},{"name":"text","data":" , "},{"name":"text","data":"岳 庆炀"},{"name":"text","data":" , "},{"name":"text","data":"孔 繁敏"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"顶端ZnO纳米结构对GaN基LED光提取效率的影响"},{"name":"text","data":" . "},{"name":"text","data":"光子学报"},{"name":"text","data":" , "},{"name":"text","data":"2013"},{"name":"text","data":" . "},{"name":"text","data":"42"},{"name":"text","data":" ( "},{"name":"text","data":"4"},{"name":"text","data":" ): "},{"name":"text","data":"409"},{"name":"text","data":" - "},{"name":"text","data":"416"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.cnki.com.cn/article/cjfdtotal-gzxb201304006.htm"}],"href":"http://www.cnki.com.cn/article/cjfdtotal-gzxb201304006.htm"}},{"name":"text","data":"."}],"title":"顶端ZnO纳米结构对GaN基LED光提取效率的影响"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"W LI"},{"name":"text","data":" , "},{"name":"text","data":"Q Y YUE"},{"name":"text","data":" , "},{"name":"text","data":"F M KONG"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Influence of surface ZnO nano-structures on the light emitting efficiency of GaN-based LED"},{"name":"text","data":" . "},{"name":"text","data":"Acta Photonica Sinica"},{"name":"text","data":" , "},{"name":"text","data":"2013"},{"name":"text","data":" . "},{"name":"text","data":"42"},{"name":"text","data":" ( "},{"name":"text","data":"4"},{"name":"text","data":" ): "},{"name":"text","data":"409"},{"name":"text","data":" - "},{"name":"text","data":"416"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.cnki.com.cn/article/cjfdtotal-gzxb201304006.htm"}],"href":"http://www.cnki.com.cn/article/cjfdtotal-gzxb201304006.htm"}},{"name":"text","data":"."}],"title":"Influence of surface ZnO nano-structures on the light emitting efficiency of GaN-based LED"}]},{"id":"b11","label":"11","citation":[{"lang":"en","text":[{"name":"p","data":[{"name":"text","data":"KIM J K, XI J Q, SCHUBERT E F. Omni-directional reflectors for light-emitting diodes[C]//"},{"name":"italic","data":[{"name":"text","data":"Proceedings of the SPIE 6134, Light-Emitting Diodes: Research, Manufacturing, and Applications X."}]},{"name":"text","data":" San Jose: SPIE, 2006: 61340D."}]}]}]},{"id":"b12","label":"12","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"李 艳菲"},{"name":"text","data":" , "},{"name":"text","data":"张 方辉"},{"name":"text","data":" , "},{"name":"text","data":"牟 曦媛"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"利用有机覆盖层提高OLED出光效率"},{"name":"text","data":" . "},{"name":"text","data":"液晶与显示"},{"name":"text","data":" , "},{"name":"text","data":"2012"},{"name":"text","data":" . "},{"name":"text","data":"27"},{"name":"text","data":" ( "},{"name":"text","data":"3"},{"name":"text","data":" ): "},{"name":"text","data":"308"},{"name":"text","data":" - "},{"name":"text","data":"312"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1694168&Fpath=&index=-1&l=zh"}],"href":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1694168&Fpath=&index=-1&l=zh"}},{"name":"text","data":"."}],"title":"利用有机覆盖层提高OLED出光效率"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"Y F LI"},{"name":"text","data":" , "},{"name":"text","data":"F H ZHANG"},{"name":"text","data":" , "},{"name":"text","data":"X Y MU"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Improved light out-coupling in organic light emitting diodes employing organic capping layer"},{"name":"text","data":" . "},{"name":"text","data":"Chinese Journal of Liquid Crystals and Displays"},{"name":"text","data":" , "},{"name":"text","data":"2012"},{"name":"text","data":" . "},{"name":"text","data":"27"},{"name":"text","data":" ( "},{"name":"text","data":"3"},{"name":"text","data":" ): "},{"name":"text","data":"308"},{"name":"text","data":" - "},{"name":"text","data":"312"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1694168&Fpath=&index=-1&l=zh"}],"href":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1694168&Fpath=&index=-1&l=zh"}},{"name":"text","data":"."}],"title":"Improved light out-coupling in organic light emitting diodes employing organic capping layer"}]},{"id":"b13","label":"13","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"T FUJⅡ"},{"name":"text","data":" , "},{"name":"text","data":"Y GAO"},{"name":"text","data":" , "},{"name":"text","data":"R SHARMA"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening"},{"name":"text","data":" . "},{"name":"text","data":"Applied Physics Letters"},{"name":"text","data":" , "},{"name":"text","data":"2004"},{"name":"text","data":" . "},{"name":"text","data":"84"},{"name":"text","data":" ( "},{"name":"text","data":"6"},{"name":"text","data":" ): "},{"name":"text","data":"855"},{"name":"text","data":" - "},{"name":"text","data":"857"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1063/1.1645992"}],"href":"http://doi.org/10.1063/1.1645992"}},{"name":"text","data":"."}],"title":"Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening"}]},{"id":"b14","label":"14","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"O B SHCHEKIN"},{"name":"text","data":" , "},{"name":"text","data":"J E EPLER"},{"name":"text","data":" , "},{"name":"text","data":"T A TROTTIER"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"High performance thin-film flip-chip InGaN-GaN light-emitting diodes"},{"name":"text","data":" . "},{"name":"text","data":"Applied Physics Letters"},{"name":"text","data":" , "},{"name":"text","data":"2006"},{"name":"text","data":" . "},{"name":"text","data":"89"},{"name":"text","data":" ( "},{"name":"text","data":"7"},{"name":"text","data":" ): "},{"name":"text","data":"071109"},{"name":"text","data":" "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1063/1.2337007"}],"href":"http://doi.org/10.1063/1.2337007"}},{"name":"text","data":"."}],"title":"High performance thin-film flip-chip InGaN-GaN light-emitting diodes"}]},{"id":"b15","label":"15","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"X H HUANG"},{"name":"text","data":" , "},{"name":"text","data":"J P LIU"},{"name":"text","data":" , "},{"name":"text","data":"J J KONG"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"High-efficiency InGaN-based LEDs grown on patterned sapphire substrates"},{"name":"text","data":" . "},{"name":"text","data":"Optics Express"},{"name":"text","data":" , "},{"name":"text","data":"2011"},{"name":"text","data":" . "},{"name":"text","data":"19"},{"name":"text","data":" ( "},{"name":"text","data":"S4"},{"name":"text","data":"."}],"title":"High-efficiency InGaN-based LEDs grown on patterned sapphire substrates"}]},{"id":"b16","label":"16","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"W Z LIU"},{"name":"text","data":" , "},{"name":"text","data":"H Y XU"},{"name":"text","data":" , "},{"name":"text","data":"C L WANG"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration"},{"name":"text","data":" . "},{"name":"text","data":"Nanoscale"},{"name":"text","data":" , "},{"name":"text","data":"2013"},{"name":"text","data":" . "},{"name":"text","data":"5"},{"name":"text","data":" ( "},{"name":"text","data":"18"},{"name":"text","data":" ): "},{"name":"text","data":"8634"},{"name":"text","data":" - "},{"name":"text","data":"8639"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1039/c3nr02844e"}],"href":"http://doi.org/10.1039/c3nr02844e"}},{"name":"text","data":"."}],"title":"Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration"}]},{"id":"b17","label":"17","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"G Y SHIU"},{"name":"text","data":" , "},{"name":"text","data":"K T CHEN"},{"name":"text","data":" , "},{"name":"text","data":"F H FAN"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"InGaN light-emitting diodes with an embedded nanoporous GaN distributed Bragg reflectors"},{"name":"text","data":" . "},{"name":"text","data":"Scientific Reports"},{"name":"text","data":" , "},{"name":"text","data":"2016"},{"name":"text","data":" . "},{"name":"text","data":"6"},{"name":"text","data":" ( "},{"name":"text","data":"1"},{"name":"text","data":" ): "},{"name":"text","data":"29138"},{"name":"text","data":" "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1038/srep29138"}],"href":"http://doi.org/10.1038/srep29138"}},{"name":"text","data":"."}],"title":"InGaN light-emitting diodes with an embedded nanoporous GaN distributed Bragg reflectors"}]},{"id":"b18","label":"18","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"G KORTüM"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Reflectance Spectroscopy:Principles, Methods, Applications"},{"name":"text","data":" , : "},{"name":"text","data":"Berlin"},{"name":"text","data":" "},{"name":"text","data":"Springer"},{"name":"text","data":" , "},{"name":"text","data":"2012"},{"name":"text","data":" ."}],"title":"Reflectance Spectroscopy:Principles, Methods, Applications"}]},{"id":"b19","label":"19","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"申屠 伟进"},{"name":"text","data":" , "},{"name":"text","data":"胡 飞"},{"name":"text","data":" , "},{"name":"text","data":"韩 彦军"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"GaN基发光二极管芯片光提取效率的研究"},{"name":"text","data":" . "},{"name":"text","data":"光电子·激光"},{"name":"text","data":" , "},{"name":"text","data":"2005"},{"name":"text","data":" . "},{"name":"text","data":"16"},{"name":"text","data":" ( "},{"name":"text","data":"4"},{"name":"text","data":" ): "},{"name":"text","data":"385"},{"name":"text","data":" - "},{"name":"text","data":"389"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://d.wanfangdata.com.cn/Periodical/gdzjg200504001"}],"href":"http://d.wanfangdata.com.cn/Periodical/gdzjg200504001"}},{"name":"text","data":"."}],"title":"GaN基发光二极管芯片光提取效率的研究"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"W J SHENTU"},{"name":"text","data":" , "},{"name":"text","data":"F HU"},{"name":"text","data":" , "},{"name":"text","data":"Y J HAN"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Study on light extraction efficiency of GaN-based light-emitting diode chips"},{"name":"text","data":" . "},{"name":"text","data":"Journal of Optoelectronics·Laser"},{"name":"text","data":" , "},{"name":"text","data":"2005"},{"name":"text","data":" . "},{"name":"text","data":"16"},{"name":"text","data":" ( "},{"name":"text","data":"4"},{"name":"text","data":" ): "},{"name":"text","data":"385"},{"name":"text","data":" - "},{"name":"text","data":"389"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://d.wanfangdata.com.cn/Periodical/gdzjg200504001"}],"href":"http://d.wanfangdata.com.cn/Periodical/gdzjg200504001"}},{"name":"text","data":"."}],"title":"Study on light extraction efficiency of GaN-based light-emitting diode chips"}]},{"id":"b20","label":"20","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"Q HUANG"},{"name":"text","data":" , "},{"name":"text","data":"K WALZER"},{"name":"text","data":" , "},{"name":"text","data":"M PFEIFFER"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Highly efficient top emitting organic light-emitting diodes with organic outcoupling enhancement layers"},{"name":"text","data":" . "},{"name":"text","data":"Applied Physics Letters"},{"name":"text","data":" , "},{"name":"text","data":"2006"},{"name":"text","data":" . "},{"name":"text","data":"88"},{"name":"text","data":" ( "},{"name":"text","data":"11"},{"name":"text","data":" ): "},{"name":"text","data":"113515"},{"name":"text","data":" "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1063/1.2185468"}],"href":"http://doi.org/10.1063/1.2185468"}},{"name":"text","data":"."}],"title":"Highly efficient top emitting organic light-emitting diodes with organic outcoupling enhancement layers"}]},{"id":"b21","label":"21","citation":[{"lang":"en","text":[{"name":"p","data":[{"name":"text","data":"HONG E, NARENDRAN N. A method for projecting useful life of LED lighting systems[C]//"},{"name":"italic","data":[{"name":"text","data":"Proceedings of the SPIE"}]},{"name":"text","data":" 5187, "},{"name":"italic","data":[{"name":"text","data":"Third International Conference on Solid State Lighting"}]},{"name":"text","data":". San Diego: SPIE, 2004: 93-99."}]}]}]},{"id":"b22","label":"22","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"X L QIAN"},{"name":"text","data":" , "},{"name":"text","data":"J ZOU"},{"name":"text","data":" , "},{"name":"text","data":"M M SHI"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Development of optical-thermal coupled model for phosphor-converted LEDs"},{"name":"text","data":" . "},{"name":"text","data":"Frontiers of Optoelectronics"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"12"},{"name":"text","data":" ( "},{"name":"text","data":"3"},{"name":"text","data":" ): "},{"name":"text","data":"249"},{"name":"text","data":" - "},{"name":"text","data":"267"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1007/s12200-018-0857-2"}],"href":"http://doi.org/10.1007/s12200-018-0857-2"}},{"name":"text","data":"."}],"title":"Development of optical-thermal coupled model for phosphor-converted LEDs"}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.37188/YJYXS20203509.0900","clc":[[{"name":"text","data":"TN383.1"}]],"dc":[],"publisherid":"yjyxs-35-9-900","citeme":[],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"江西省自然科学基金资助项目(No.20192BAB207034)"}]},{"lang":"en","text":[{"name":"text","data":"Supported by National Science Foundation of Jiangxi Province(No.20192BAB207034)"}]}],"history":{"received":"2020-02-23","revised":"2020-06-15","ppub":"2020-09-05","opub":"2021-10-11"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有©《液晶与显示》编辑部2020"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright ©2020 Chinese Journal of Liquid Crystals and Displays. All rights reserved."}],"type":"copyright"}],"year":"2020"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"液晶与显示","issue":"9","volume":"35","originalSource":[]}