{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"基于ANSYS液晶玻璃基板的应力分析"}]},{"lang":"en","data":[{"name":"text","data":"Stress analysis of LCD glass substrate based on ANSYS"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"刘","givenname":"洋","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LIU","givenname":"Yang","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":["first-author"],"bio":[{"lang":"zh","text":["刘洋(1990-), 男, 安徽阜阳人, 硕士, 工程师, 2016年于中南大学获得硕士学位, 现任职于福州京东方光电科技有限公司, 主要从事液晶面板制造Assy工艺的研究。E-mail:liuyangfz@boe.com.cn"],"graphic":[],"data":[[{"name":"text","data":"刘洋(1990-), 男, 安徽阜阳人, 硕士, 工程师, 2016年于中南大学获得硕士学位, 现任职于福州京东方光电科技有限公司, 主要从事液晶面板制造Assy工艺的研究。E-mail:"},{"name":"text","data":"liuyangfz@boe.com.cn"}]]}],"email":"liuyangfz@boe.com.cn","deceased":false},{"name":[{"lang":"zh","surname":"胡","givenname":"亮","namestyle":"eastern","prefix":""},{"lang":"en","surname":"HU","givenname":"Liang","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":["corresp"],"corresp":[{"rid":"cor1","lang":"zh","text":"胡亮, E-mail:huliang@boe.com.cn","data":[{"name":"text","data":"胡亮, E-mail:huliang@boe.com.cn"}]}],"bio":[{"lang":"zh","text":["胡亮(1985-), 男, 北京人, 硕士, 资深高级工程师, 2010年于北京航空航天大学获得硕士学位, 现任职于福州京东方光电科技有限公司, 主要从事液晶面板制造成盒工艺的研究。E-mail:huliang@boe.com.cn"],"graphic":[],"data":[[{"name":"text","data":"胡亮(1985-), 男, 北京人, 硕士, 资深高级工程师, 2010年于北京航空航天大学获得硕士学位, 现任职于福州京东方光电科技有限公司, 主要从事液晶面板制造成盒工艺的研究。E-mail:"},{"name":"text","data":"huliang@boe.com.cn"}]]}],"email":"huliang@boe.com.cn","deceased":false},{"name":[{"lang":"zh","surname":"洪","givenname":"性坤","namestyle":"eastern","prefix":""},{"lang":"en","surname":"HONG","givenname":"Xing-kun","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"朱","givenname":"载荣","namestyle":"eastern","prefix":""},{"lang":"en","surname":"ZHU","givenname":"Zai-rong","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"桂","givenname":"继维","namestyle":"eastern","prefix":""},{"lang":"en","surname":"GUI","givenname":"Ji-wei","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"陈","givenname":"栋","namestyle":"eastern","prefix":""},{"lang":"en","surname":"CHEN","givenname":"Dong","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"王","givenname":"维维","namestyle":"eastern","prefix":""},{"lang":"en","surname":"WANG","givenname":"Wei-wei","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"聂","givenname":"学政","namestyle":"eastern","prefix":""},{"lang":"en","surname":"NIE","givenname":"Xue-zheng","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"章","givenname":"亭","namestyle":"eastern","prefix":""},{"lang":"en","surname":"ZHANG","givenname":"Ting","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"","text":"福州京东方光电科技有限公司, 福建 福州 350000","data":[{"name":"text","data":"福州京东方光电科技有限公司, 福建 福州 350000"}]},{"lang":"en","label":"","text":"Fuzhou Boe Optoelectronics Technology Co., Ltd, Fuzhou 350000, China","data":[{"name":"text","data":"Fuzhou Boe Optoelectronics Technology Co., Ltd, Fuzhou 350000, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"为了管控紫外光固化工艺过程掩膜版的裂纹,基于ANSYS对受石英棒吸附的液晶玻璃基板的结构应力及升降温过程的热应力进行仿真分析,讨论了不同材料和不同厚度玻璃基板的结构应力及热应力变化。结构应力分析结果表明,基板挠度、等效应力和弯曲应力最大值均出现在中部;基板厚度增加时,最大应力值显著减小。热应力分析结果表明,当玻璃基板存在温度梯度时,升温较大的区域,玻璃基板挠度更大;随着温度先增大后减小,玻璃基板挠度、等效应力与弯曲应力均先增大后减小,且升降温过程中基板应力变化显著,等效应力变化最大,弯曲压应力变化较小,弯曲拉应力变化最小。玻璃基板等效应力和弯曲拉应力最大值分别达到44.8 MPa和5.79 MPa。优化设备降温系统,降低玻璃基板各区域的温度梯度与基板升温值等可有效防止玻璃破裂的发生。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"Structural stress and thermal stress of LCD glass substrate absorbed by quartz-rod was studied by numerical method. The change of glass structure stress and thermal stress of different material and different thickness glass was discussed. The results of structural stress analysis show that the maximum deflection, equivalent stress and bending stress are in the middle of glass. When the thickness of the substrate increases, the maximum stress value decreases significantly. The thermal stress analysis shows that when the glass substrate has a temperature gradient, the glass substrate is more deflected with the larger heated area. With the decrease of the temperature, the deflection, equivalent stress and bending stress of the glass substrate are increased first, then the stress of the substrate is significant in the process of cooling. As the temperature increases after the first decreases, the deflection, equivalent stress and bending stress of glass substrate firstly increases then decreases, and the substrate stress changes significantly in the process, equivalent stress changes most, bending compressive stress changes smaller, bending tensile stress changes smallest. The maximum values of the equivalent stress and bending stress of glass substrate are 44.8 MPa and 5.79 MPa respectively. Reducing the temperature gradient and the heating value of the glass substrate can effectively prevent the glass cracking."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"ANSYS"}],[{"name":"text","data":"玻璃基板"}],[{"name":"text","data":"结构应力"}],[{"name":"text","data":"热应力"}]]},{"lang":"en","data":[[{"name":"text","data":"ANSYS"}],[{"name":"text","data":"glass substrate"}],[{"name":"text","data":"structural stress"}],[{"name":"text","data":"thermal stress"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"TFT-LCD的生产过程主要包括阵列制程, 彩膜制程, 成盒制程和模组制程。其中, 成盒工艺过程主要由PI、Rubbing和Assy等工艺组成。在Assy工艺中, 彩膜基板与阵列基板贴合后, 为防止液晶与封框胶接触并发生作用, 产生不良, 须及时固化封框胶表面。采用掩膜版遮盖液晶区, 以防紫外光对液晶材料的分解作用。现有的掩膜基板放置方式是采用九根左右的石英棒吸附, 制作掩膜版的玻璃基板厚度仅0.5 mm。阵列与彩膜对盒基板送入紫外固化设备后, 掩膜基板受紫外光照射升温; 当紫外光固化工艺完成后, 紫外灯快门关闭, 掩膜版受冷却系统的作用降温。"}]},{"name":"p","data":[{"name":"text","data":"紫外固化工艺过程决定了掩膜版反复升温与降温的过程。采用石英棒吸附掩膜版时, 石英棒自身的下垂会对玻璃基板的吸附产生局部应力不一致的影响。对于G8.5以上的大尺寸显示玻璃基板, 反复受升温与降温的作用, 过程中基板受冷却作用温度不均一且又受石英棒吸附应力的影响, 易导致掩膜版破裂。掩膜版破裂即导致宕机事故的发生, 对量产的产能影响巨大。因此, 对液晶显示玻璃进行应力分析显得十分必要。"}]},{"name":"p","data":[{"name":"text","data":"对玻璃基板应力的分析一般采用3种方法:理论分析"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"2","type":"bibr","rid":"b2","data":[{"name":"text","data":"2"}]}}],"rid":["b1","b2"],"text":"1-2","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"、实验测试"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"3","type":"bibr","rid":"b3","data":[{"name":"text","data":"3"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}}],"rid":["b3","b4"],"text":"3-4","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"和数值模拟"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"5","type":"bibr","rid":"b5","data":[{"name":"text","data":"5"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。理论分析需要将组件的几何形状和材料行为进行许多简化, 易导致与实际变形不相符。实验测试依赖测量仪器, 测量的数据与实际情况有误差。随着计算机的发展及计算技术的不断提高, 数值模拟技术已成为一种方便、实用的研究方法"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}}],"rid":["b6","b7","b8"],"text":"6-8","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。有限元法为数值模拟方法之一, 该方法可以对液晶显示玻璃的单元类型、尺寸和网格设计进行调节, 从而实现精确的仿真"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"ANSYS热应力分析方法分为3种, 即直接法、间接法和在结构应力分析中直接定义节点温度"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"10","type":"bibr","rid":"b10","data":[{"name":"text","data":"10"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。通过实验测定玻璃基板散点温度, 用Matlab拟合出温度场函数, 加载于结构应力分析模型的节点上, 即采用ANSYS的第3种方法对液晶显示玻璃热应力进行分析。本文基于ANSYS有限元软件, 建立了液晶显示玻璃的升降温数值模拟模型, 得到了不同材料显示玻璃应力分布与应力随基板温度的变化规律。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"材料参数"}],"level":"1","id":"s2"}},{"name":"p","data":[{"name":"text","data":"商用TFT-LCD无碱玻璃基板的性能主要由其组成决定, 随着无碱铝硼硅酸盐玻璃化学组成的不断发展与改进, TFT-LCD玻璃基板的性能也得到了很大改进。本文以Corning公司Eagle XG与NEG公司的OA-11典型商用TFT-LCD玻璃基板为研究对象, 吸附玻璃基板的石英棒纯度在99.9%以上。"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":"为玻璃基板与石英棒的性能参数"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"11","type":"bibr","rid":"b11","data":[{"name":"text","data":"11"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"12","type":"bibr","rid":"b12","data":[{"name":"text","data":"12"}]}}],"rid":["b11","b12"],"text":"11-12","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"table","data":{"id":"Table1","caption":[{"lang":"zh","label":[{"name":"text","data":"表1"}],"title":[{"name":"text","data":"Eagle XG, OA-11和石英棒的性能参数"}]},{"lang":"en","label":[{"name":"text","data":"Table 1"}],"title":[{"name":"text","data":"Properties of Eagle XG, OA-11 and quartz rods"}]}],"note":[],"table":[{"head":[[{"align":"center","data":[]},{"align":"center","data":[{"name":"text","data":"密度/(g·cm"},{"name":"sup","data":[{"name":"text","data":"-3"}]},{"name":"text","data":")"}]},{"align":"center","data":[{"name":"text","data":"弹性模量/GPa"}]},{"align":"center","data":[{"name":"text","data":"泊松比"}]},{"align":"center","data":[{"name":"text","data":"热导率/(W·(m·K)"},{"name":"sup","data":[{"name":"text","data":"-1"}]},{"name":"text","data":")"}]},{"align":"center","data":[{"name":"text","data":"热膨胀系数/K"},{"name":"sup","data":[{"name":"text","data":"-1"}]}]}]],"body":[[{"align":"center","data":[{"name":"text","data":"Eagle XG"}]},{"align":"center","data":[{"name":"text","data":"2.38"}]},{"align":"center","data":[{"name":"text","data":"73.6"}]},{"align":"center","data":[{"name":"text","data":"0.23"}]},{"align":"center","data":[{"name":"text","data":"1.09"}]},{"align":"center","data":[{"name":"text","data":"31.7×10"},{"name":"sup","data":[{"name":"text","data":"-7"}]}]}],[{"align":"center","data":[{"name":"text","data":"OA-11"}]},{"align":"center","data":[{"name":"text","data":"2.52"}]},{"align":"center","data":[{"name":"text","data":"78"}]},{"align":"center","data":[{"name":"text","data":"0.22"}]},{"align":"center","data":[{"name":"text","data":"1.0"}]},{"align":"center","data":[{"name":"text","data":"37×10"},{"name":"sup","data":[{"name":"text","data":"-7"}]}]}],[{"align":"center","data":[{"name":"text","data":"石英棒"}]},{"align":"center","data":[{"name":"text","data":"2.2"}]},{"align":"center","data":[{"name":"text","data":"74.2"}]},{"align":"center","data":[{"name":"text","data":"0.17"}]},{"align":"center","data":[{"name":"text","data":"1.4"}]},{"align":"center","data":[{"name":"text","data":"5.5×10"},{"name":"sup","data":[{"name":"text","data":"-7"}]}]}]],"foot":[]}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"仿真过程"}],"level":"1","id":"s3"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1"}],"title":[{"name":"text","data":"有限元计算模型"}],"level":"2","id":"s3-1"}},{"name":"p","data":[{"name":"text","data":"采用ANSYS对石英棒真空吸附时的液晶显示玻璃建立几何模型, 以2 500 mm×2 200 mm×0.5 mm的Corning玻璃及2 550 mm×30 mm×35 mm的九根等间距并排石英棒为模拟对象, 建立三维即玻璃基板长度方向、宽度方向和厚度方向的立体模型, "},{"name":"italic","data":[{"name":"text","data":"X"}]},{"name":"text","data":"轴方向表示长度, "},{"name":"italic","data":[{"name":"text","data":"Y"}]},{"name":"text","data":"轴方向表示宽度, "},{"name":"italic","data":[{"name":"text","data":"Z"}]},{"name":"text","data":"轴方向表示厚度, 通过设定玻璃基板与石英棒的各项参数:热膨胀系数、导热系数、弹性模量、泊松比及密度等, 得到玻璃基板与石英棒模型。玻璃基板属于薄壁结构, 采用Shell单元可以减少计算量, 薄壁结构承受弯矩时, 厚度方向单元层较少时, Shell单元比Solid单元计算更准确, 因此本模型中玻璃基板采用非线性分层结构壳的Shell 91单元。石英棒属于三维结构实体, 采用Solid 45单元。网格划分的单元尺寸为20 mm。在仿真过程中, 对有限元模型设置了参考温度(玻璃基板升温时零时刻的温度值), 并假定石英棒吸附玻璃基板牢固, 玻璃基板与石英棒采用共节点的方式连接。"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"所示为有限元计算的几何模型。"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"玻璃基板应力场的有限元模型"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"Finite element model of the stress field of glass substrate"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642776&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642776&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642776&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2"}],"title":[{"name":"text","data":"热应力场的加载"}],"level":"2","id":"s3-2"}},{"name":"p","data":[{"name":"text","data":"通过实验测定玻璃基板在紫外固化设备内升温与冷却过程中零时刻至120 s时刻的散点温度值, 用Matlab软件拟合出某时刻玻璃基板的温度场分布, 得出玻璃基板的温度分布曲面函数。式(1)为42 s时刻玻璃基板温度分布曲面函数式。"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"1"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642780&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642780&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642780&type=middle"}}}],"id":"yjyxs-33-3-188-E1"}}]},{"name":"p","data":[{"name":"text","data":"本文通过ANSYS的参数化设计语言(Ansys parametric design language), 并采用在结构应力分析中直接定义节点温度的方法进行ANSYS热应力分析。即在完成结构应力分析与温度场分析后, 将温度场函数加载于节点上, 进行温度场与应力场耦合, 从而实现热应力场的加载。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"仿真结果及讨论"}],"level":"1","id":"s4"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.1"}],"title":[{"name":"text","data":"结构应力分析"}],"level":"2","id":"s4-1"}},{"name":"p","data":[{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"所示为玻璃基板结构应力分析的挠度分布云图、等效应力分布云图和弯曲应力分布云图。受石英棒下垂及玻璃基板自重影响, 玻璃基板中间部位延"},{"name":"italic","data":[{"name":"text","data":"Y"}]},{"name":"text","data":"轴向挠度最大, 达1.463 mm, 并且延"},{"name":"italic","data":[{"name":"text","data":"X"}]},{"name":"text","data":"轴向两端呈梯度递减趋势。玻璃基板与石英棒下垂量为1.463 mm, 与实测值1.5 mm相符, 说明数值模型建立正确。同样, 玻璃基板中部延"},{"name":"italic","data":[{"name":"text","data":"Y"}]},{"name":"text","data":"轴向的等效应力与弯曲应力也较大, 并且延"},{"name":"italic","data":[{"name":"text","data":"X"}]},{"name":"text","data":"轴向两端呈梯度递减趋势, 因石英棒与玻璃基板端点存在约束条件, 最大应力值出现在约束边界上。"}]},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"0.5 mm Corning玻璃挠度与结构应力分布云图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"Cloud image of deflection and structural stress of 0.5 mm corning glass"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642784&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642784&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642784&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"玻璃基板厚度改变时, 其挠度与所受应力也随之改变。"},{"name":"xref","data":{"text":"图 3","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3"}]}},{"name":"text","data":"为Corning与NEG玻璃从0.3 mm厚增至1.1 mm厚时, 玻璃基板的最大挠度值和最大应力值分别与玻璃基板厚度的关系。玻璃基板厚度增加, Corning与NEG玻璃的挠度值均减小, 且降低的幅度明显。同厚度的Corning与NEG玻璃, Corning玻璃挠度值较NEG的略小, 也就是其下垂量更小, 变形量较NEG玻璃小。随着玻璃基板厚度增加, Corning与NEG玻璃的等效应力与弯曲应力均减小, 同厚度的Corning与NEG玻璃, Corning玻璃的等效应力与弯曲应力均比NEG玻璃的较小, 所以, 理论上NEG玻璃比Corning玻璃更易裂。"},{"name":"xref","data":{"text":"图 4","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4"}]}},{"name":"text","data":"为玻璃基板抗弯强度与厚度的关系曲线, 由图可知, 随着玻璃基板厚度的增加, 玻璃的抗弯强度显著增加。"}]},{"name":"fig","data":{"id":"Figure3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"Corning与NEG玻璃厚度与挠度、结构应力的关系"}]},{"lang":"en","label":[{"name":"text","data":"Fig 3"}],"title":[{"name":"text","data":"Relationship between glass thickness and bending, stress of corning and NEG glass"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642789&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642789&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642789&type=middle"}]}},{"name":"fig","data":{"id":"Figure4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"text","data":"玻璃基板抗弯强度与厚度的关系"}]},{"lang":"en","label":[{"name":"text","data":"Fig 4"}],"title":[{"name":"text","data":"Relationship between flexural strength and thickness of glass substrate"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642792&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642792&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642792&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"综合不同厚度玻璃基板受石英棒吸附作用时的应力变化与玻璃基板抗弯强度随厚度的变化可知, 玻璃基板越厚, 其抗弯强度更强, 并且受石英棒作用的等效应力与弯曲应力更小, 因此, 改用厚尺寸玻璃作掩膜版, 可以显著降低玻璃基板破裂风险。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.2"}],"title":[{"name":"text","data":"热应力分析"}],"level":"2","id":"s4-2"}},{"name":"p","data":[{"name":"text","data":"以零时刻玻璃基板的温度分布作为参考温度, 分别加载10 s至120 s时刻参考零时刻的温度差值, 拟合得出的温度场函数加载于结构分析模型, 进行热应力分析。"},{"name":"xref","data":{"text":"图 5","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5"}]}},{"name":"text","data":"为42 s时刻0.5 mm厚Corning玻璃热应力分析的挠度分布云图、等效应力分布云图和弯曲应力分布云图。受石英棒与玻璃基板自重下垂及温度影响, 玻璃基板中间部位延"},{"name":"italic","data":[{"name":"text","data":"Y"}]},{"name":"text","data":"轴向挠度较大, 最大值达2.819 mm, 并且延"},{"name":"italic","data":[{"name":"text","data":"X"}]},{"name":"text","data":"轴向两端呈梯度递减趋势。另外, 玻璃基板受温度影响, 当存在温度梯度时, 升温较大的区域, 玻璃基板产生更大的下垂。"}]},{"name":"fig","data":{"id":"Figure5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"42 s时刻0.5 mm Corning玻璃挠度与热应力分布云图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 5"}],"title":[{"name":"text","data":"Cloud image of deflection and thermal stress of 0.5 mm corning glass by 42 s"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642797&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642797&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642797&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"因石英棒与玻璃基板端点存在约束条件, 局部等效应力较大。玻璃基板延"},{"name":"italic","data":[{"name":"text","data":"X"}]},{"name":"text","data":"轴方向有个等效应力分布梯度, 靠近石英棒边缘处的应力梯度更大, 应力梯度较大的区域易产生贯穿性裂纹, 与实际生产情况相符。玻璃基板在石英棒吸附作用下升温至42 s时刻时, 玻璃基板主要受弯曲压应力作用, 最大压应力值达到37.8 MPa, 弯曲拉应力最大值达5.79 MPa。玻璃基板延"},{"name":"italic","data":[{"name":"text","data":"X"}]},{"name":"text","data":"轴方向同样存在弯曲应力分布梯度, 靠近石英棒边缘处的应力梯度也更大。"}]},{"name":"p","data":[{"name":"text","data":"在玻璃基板升降温过程的不同阶段, 因不同时刻基板温度不同, 则玻璃基板的热应力也不尽相同。"},{"name":"xref","data":{"text":"图 6","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6"}]}},{"name":"text","data":"为玻璃基板从10 s时刻至120 s时刻的升降温过程中, 玻璃基板挠度最大值、应力最大值与时间的关系曲线。在玻璃基板温度先增大后减小的过程中, 其挠度也先增大后减小, 在42 s时刻的温差最大, 即玻璃基板下垂量达到最大。当温度场相同时, 同厚度的Corning玻璃比NEG玻璃的下垂量较小。当玻璃基板温度越高时, Corning与NEG玻璃下垂量的差异也越明显。"}]},{"name":"fig","data":{"id":"Figure6","caption":[{"lang":"zh","label":[{"name":"text","data":"图6"}],"title":[{"name":"text","data":"0.5 mm Corning与NEG玻璃挠度、热应力与时间关系"}]},{"lang":"en","label":[{"name":"text","data":"Fig 6"}],"title":[{"name":"text","data":"Relationship between time and bending, thermal stress of 0.5 mm Corning and NEG glass"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642812&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642812&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642812&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"在升降温阶段, 随着温差的先增大后减小, Corning与NEG玻璃的等效应力与弯曲应力均先增大后减小。同温差下, Corning比NEG玻璃应力略小。玻璃基板升降温过程中的等效应力变化最大, 弯曲压应力变化较小, 弯曲拉应力变化最小。在42 s时刻, 玻璃基板等效应力和弯曲拉应力最大值分别达到44.8 MPa和5.79 MPa。相较于结构应力分析, 当温度加载后, 一个循环的升降温过程中, 玻璃基板受温差影响的等效应力与弯曲应力均显著增大与减小, 对于玻璃的疲劳过程而言, 易导致玻璃破裂。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"5"}],"title":[{"name":"text","data":"结论"}],"level":"1","id":"s5"}},{"name":"p","data":[{"name":"text","data":"本文通过ANSYS的参数化设计语言(Ansys parametric design language), 并采用在结构应力分析中直接定义节点温度的方法进行ANSYS热应力分析。基于ANSYS有限元模拟软件建立了液晶显示玻璃的结构应力与热应力分析模型, 讨论了不同材料和不同厚度玻璃基板的结构应力及热应力变化, 结果表明:"}]},{"name":"p","data":[{"name":"text","data":"(1) 玻璃基板厚度增加, Corning与NEG玻璃的挠度值均减小。同厚度的Corning与NEG玻璃, Corning玻璃挠度值较NEG的略小, 即变形量略小于NEG玻璃。"}]},{"name":"p","data":[{"name":"text","data":"(2) 玻璃基板越厚, 其抗弯强度更强, 并且受石英棒吸附时的等效应力与弯曲应力更小, 因此, 改用厚尺寸玻璃作掩膜版, 可以显著降低玻璃基板破裂风险。"}]},{"name":"p","data":[{"name":"text","data":"(3) 玻璃基板升降温过程中的等效应力变化最大, 弯曲压应力变化较小, 弯曲拉应力变化最小。玻璃基板等效应力和弯曲拉应力最大值分别达到44.8 MPa和5.79 MPa。"}]},{"name":"p","data":[{"name":"text","data":"(4) 玻璃基板受热时发生膨胀, 温度梯度与温差共同作用, 以及石英棒受重产生的弯曲等, 导致基板应力分布不均匀。因此, 优化设备降温系统, 降低玻璃基板各区域的温度梯度与基板升温值, 以及消除石英棒的下垂可有效改善基板受力的均一性, 防止玻璃破裂的发生。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"zh","text":[{"name":"text","data":"马眷荣, 臧曙光, 丁丽梅.夹层玻璃力学模型的探讨[J].航空材料学报, 1998, 18(3):57-61."}]},{"lang":"en","text":[{"name":"text","data":"MA J R, ZANG S G, DING L M. Study of laminated glass mechanical model[J]. Journal of Aeronautical Materials, 1998, 18(3):57-61. (in Chinese)"}]}]},{"id":"b2","label":"2","citation":[{"lang":"en","text":[{"name":"text","data":"SURANAK S, SOREM R M. Curved shell elements based on hierarchical p-approximation in the thickness direction for linear static analysis of laminated composites[J]. International Journal for Numerical Methods in Engineering, 1990, 29(7):1393-1420."}]}]},{"id":"b3","label":"3","citation":[{"lang":"zh","text":[{"name":"text","data":"戴福隆.现代光测力学[M].北京:科学出版社, 1990:77-103."}]},{"lang":"en","text":[{"name":"text","data":"DAI F L. Modern Optical Dynamics[M]. Beijing:Science Press, 1990:77-103. (in Chinese)"}]}]},{"id":"b4","label":"4","citation":[{"lang":"zh","text":[{"name":"text","data":"李亚利, 张方辉. TFT-LCD切割裂片工艺参数探讨[J].液晶与显示, 2006, 21(1):43-47."}]},{"lang":"en","text":[{"name":"text","data":"LI Y L, ZHANG F H. Parameters of cutting and splitting glass substrates process of TFT-LCD[J]. Chinese Journal of Liquid Crystals and Displays, 2006, 21(1):43-47. (in Chinese)"}]}]},{"id":"b5","label":"5","citation":[{"lang":"zh","text":[{"name":"text","data":"张维佳, 岳锡华, 范学涛, 等.飞机座舱风档复合玻璃结构优化设计[J].北京航空航天大学学报, 1997, 23(2):141-146."}]},{"lang":"en","text":[{"name":"text","data":"ZHANG W J, YUE X H, FAN X T, et al. Optimal design of multilayer composite-glass with transparent conduction films[J]. Journal of Beijing University of Aeronautics and Astronautics, 1997, 23(2):141-146. (in Chinese)"}]}]},{"id":"b6","label":"6","citation":[{"lang":"en","text":[{"name":"text","data":"KLOUZEK J, NEMEC L, ULLRICH J. Modelling of the refining space working under reduced pressure[J]. Glass Science and Technology, 2000, 73(11):329-336."}]}]},{"id":"b7","label":"7","citation":[{"lang":"en","text":[{"name":"text","data":"BAUERJ, ROGER U, SIMONS P. Validation of a mathematical glass tank model[J]. Glass Science and Technology, 1999, 72(6):171-181."}]}]},{"id":"b8","label":"8","citation":[{"lang":"en","text":[{"name":"text","data":"WANGJ, BREWSTER B S, MCQUAY M Q, et al. Validation of an improved batch model in a coupled combustion space/melt tank/batch melting glass furnace simulation[J]. Glass Science and Technology, 2000, 73(10):299-307."}]}]},{"id":"b9","label":"9","citation":[{"lang":"zh","text":[{"name":"text","data":"韩文梅.基于ANSYS航空层合玻璃的热应力分析[J].兵器材料科学与工程, 2010, 33(6):1-3."}]},{"lang":"en","text":[{"name":"text","data":"HAN W M. Thermal stress analysis of aerial laminated glass based on ANSYS[J]. Ordnance Material Science and Engineering, 2010, 33(6):1-3. (in Chinese)"}]}]},{"id":"b10","label":"10","citation":[{"lang":"zh","text":[{"name":"text","data":"廖英强, 苏建河, 柯善良. ANSYS在复合材料仿真分析中的应用[J].纤维复合材料, 2006, 23(1):63-66."}]},{"lang":"en","text":[{"name":"text","data":"LIAO Y Q, SU J H, KE S L. Application of ANSYS in composite simulation analysis[J]. Fiber Composites, 2006, 23(1):63-66. (in Chinese)"}]}]},{"id":"b11","label":"11","citation":[{"lang":"zh","text":[{"name":"text","data":"汤何锐, 韩建军, 王静, 等.无碱铝硼硅酸盐玻璃组成及结构研究进展[J].电子玻璃技术2016, 48:21-26."}]},{"lang":"en","text":[{"name":"text","data":"TANG H R, HAN J J, WANG J, et al. Research progress on the composition and structure of alkali-alumina silicate glass[J]. Electronic Glass Technology, 2016, 48:21-26. (in Chinese)"}]}]},{"id":"b12","label":"12","citation":[{"lang":"zh","text":[{"name":"text","data":"张磊. TFT-LCD基板玻璃配方及工艺性能研究[D]. 北京: 北京工业大学, 2011."}]},{"lang":"en","text":[{"name":"text","data":"ZHANG L. "},{"name":"italic","data":[{"name":"text","data":"Study on the composition and technical properties of substrate glasses for TFT-LCD"}]},{"name":"text","data":"[D]. Beijing: Beijing University of Technology, 2011. (in Chinese)"}]}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.3788/YJYXS20183303.0188","clc":[[{"name":"text","data":"O348.7"}]],"dc":[],"publisherid":"yjyxs-33-3-188","citeme":[],"fundinggroup":[],"history":{"received":"2017-09-08","accepted":"2017-10-30","ppub":"2018-03-05","opub":"2020-06-15"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有©《液晶与显示》编辑部2018"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright ©2018 Chinese Journal of Liquid Crystals and Displays. All rights reserved."}],"type":"copyright"}],"year":"2018"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"液晶与显示","issue":"3","volume":"33","originalSource":[]}