{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"纳米颗粒掺杂的聚合物稳定液晶微管随机激光器性能研究"}]},{"lang":"en","data":[{"name":"text","data":"Properties of random laser based on polymer stabilized liquid crystal doped with nanoparticles"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"陈","givenname":"茂洲","namestyle":"eastern","prefix":""},{"lang":"en","surname":"CHEN","givenname":"Mao-zhou","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":["first-author"],"bio":[{"lang":"zh","text":["陈茂洲(1992-), 男, 山西原平人, 硕士研究生, 主要从事液晶激光、液晶显示方面的研究"],"graphic":[],"data":[[{"name":"text","data":"陈茂洲(1992-), 男, 山西原平人, 硕士研究生, 主要从事液晶激光、液晶显示方面的研究"}]]}],"deceased":false},{"name":[{"lang":"zh","surname":"戴","givenname":"海涛","namestyle":"eastern","prefix":""},{"lang":"en","surname":"DAI","givenname":"Hai-tao","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":["corresp"],"corresp":[{"rid":"cor1","lang":"zh","text":"戴海涛, E-mail:htdai@tju.edu.cn","data":[{"name":"text","data":"戴海涛, E-mail:htdai@tju.edu.cn"}]}],"bio":[{"lang":"zh","text":["戴海涛(1977-), 男, 河南焦作人, 博士后, 教授, 主要从事液晶光电子器件(柔性液晶激光, 快速液晶开关器件以及液晶光场调控器件); 能源光子学(包括光催化分解水, 新型固态发光和太阳能电池器件); 光学超材料和超表面特性等方面的研究。E-mail:htdai@tju.edu.cn"],"graphic":[],"data":[[{"name":"text","data":"戴海涛(1977-), 男, 河南焦作人, 博士后, 教授, 主要从事液晶光电子器件(柔性液晶激光, 快速液晶开关器件以及液晶光场调控器件); 能源光子学(包括光催化分解水, 新型固态发光和太阳能电池器件); 光学超材料和超表面特性等方面的研究。E-mail:"},{"name":"text","data":"htdai@tju.edu.cn"}]]}],"email":"htdai@tju.edu.cn","deceased":false},{"name":[{"lang":"zh","surname":"罗","givenname":"丹","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LUO","givenname":"Dan","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff2","text":"2"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"张","givenname":"晓东","namestyle":"eastern","prefix":""},{"lang":"en","surname":"ZHANG","givenname":"Xiao-dong","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"刘","givenname":"昌龙","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LIU","givenname":"Chang-long","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"1","text":"天津大学 理学院, 天津 300072","data":[{"name":"text","data":"天津大学 理学院, 天津 300072"}]},{"lang":"en","label":"1","text":"School of Science, Tianjin University, Tianjin 300072, China","data":[{"name":"text","data":"School of Science, Tianjin University, Tianjin 300072, China"}]}]},{"id":"aff2","intro":[{"lang":"zh","label":"2","text":"南方科技大学 电子与电气工程系, 广东 深圳 518055","data":[{"name":"text","data":"南方科技大学 电子与电气工程系, 广东 深圳 518055"}]},{"lang":"en","label":"2","text":"Department of Electrical & Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China","data":[{"name":"text","data":"Department of Electrical & Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"为了优化液晶类微管激光器的性能,拓展其应用领域,本文研究了银纳米颗粒和氧化锌纳米颗粒对染料掺杂聚合物稳定液晶微管激光器出射激光的影响。通过掺杂不同浓度的银纳米颗粒和氧化锌纳米颗粒在聚合物稳定液晶的微管随机激光器中,探究其对微管激光器出射激光特征的影响,并对比两种纳米颗粒的影响效果。实验结果表明:当在聚合物稳定液晶微管激光器中掺入0.1%的银纳米颗粒后,随机激光出射强度增强,其激光阈值从23.2"},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"J/pulse减小至10.9 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"J/pulse。当氧化锌纳米颗粒的掺杂浓度达到1.0%时,在随机激光出射强度增加的同时,激光出射阈值会减小至21.2 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"J/pulse。然而,过量纳米颗粒的掺杂均会造成随机激光出射光强的降低和激光阈值的增加,其原因在于纳米颗粒团簇的产生,降低了纳米颗粒的散射作用。实验结果还表明,银纳米颗粒掺杂对微管激光器性能的提升明显优于氧化锌,这归因于银纳米颗粒所引发的局域表面等离共振效应会增强其散射作用。通过掺杂纳米颗粒,微管随机激光器的性能得到了提升,为其在通讯、加密以及液晶显示等领域奠定了基础。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"This paper investigated the improvement of random lasing properties based on dye-doped polymer stabilized liquid crystals (DDPSLC) by doping Ag and ZnO nanoparticles (NPs) with different concentrations in capillaries, in order to expand new applications for this device. At first, DDPSLC samples with different dye doping concentrations were prepared in capillary tubes to select an optimum DDPSLC system for doping NPs. After selecting the optimum DDPSLC, some Ag NPs and ZnO NPs with different concentrations were added into the DDPSLC to investigate the effect on the random lasing properties. The experimental results indicate that the random lasing threshold decreased from 23.2 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"J/pulse to 10.9 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"J/pulse after doping 0.1% Ag NPs into DDPSLC. As the doping concentration of ZnO NPs increased to 1%, the lasing properties can be also improved due to the scattering effect of ZnO NPs, and the lasing threshold of the DDPSLC decreased slightly to 21.2"},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"J/pulse. As the doping concentrations of NPs continually increased, some NPs clusters can be observed obviously in capillary samples, which have a negative effect on random lasing emission. In addition, doping Ag NPs with optimum concentrations (0.1%) can enhance the random lasing properties more significantly because of the improvement of scattering effect caused by localized surface plasmon resonance (LSPR). The random lasing devices based on DDPSLC containing Ag NPs or ZnO NPs will have widely potential applications in LC display, communications and encryption technology."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"纳米颗粒"}],[{"name":"text","data":"染料激光器"}],[{"name":"text","data":"液晶"}]]},{"lang":"en","data":[[{"name":"text","data":"nanoparticles"}],[{"name":"text","data":"dye lasers"}],[{"name":"text","data":"liquid crystals"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"随着液晶技术的发展, 基于液晶及液晶聚合物材料的激光器受到了广泛地关注, 此类激光器具有成本低、可调控性强、易集成等多方面的优势"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"3","type":"bibr","rid":"b3","data":[{"name":"text","data":"3"}]}}],"rid":["b1","b2","b3"],"text":"1-3","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。目前, 已经开发了多种类型的液晶基随机激光器件, 如向列相液晶"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"5","type":"bibr","rid":"b5","data":[{"name":"text","data":"5"}]}}],"rid":["b4","b5"],"text":"4-5","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"、胆甾相液晶"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"7","type":"bibr","rid":"b7","data":[{"name":"text","data":"7"}]}}],"rid":["b6","b7"],"text":"6-7","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"、蓝相液晶"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"、聚合物分散液晶"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"]"}]},{"name":"text","data":", 以及聚合物稳定液晶"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"10","type":"bibr","rid":"b10","data":[{"name":"text","data":"10"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。与此同时, 液晶激光器也被尝试制作在了不同的几何结构当中, 如平板玻璃盒子"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"10","type":"bibr","rid":"b10","data":[{"name":"text","data":"10"}]}}],"rid":["b4","b5","b6","b7","b8","b9","b10"],"text":"4-10","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"、光子晶体光纤"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"11","type":"bibr","rid":"b11","data":[{"name":"text","data":"11"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"13","type":"bibr","rid":"b13","data":[{"name":"text","data":"13"}]}}],"rid":["b11","b12","b13"],"text":"11-13","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"、毛细玻璃管"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"17","type":"bibr","rid":"b17","data":[{"name":"text","data":"17"}]}}],"rid":["b14","b15","b16","b17"],"text":"14-17","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"液晶激光器特点在于其出射激光特征可以用光辐照"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"18","type":"bibr","rid":"b18","data":[{"name":"text","data":"18"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"19","type":"bibr","rid":"b19","data":[{"name":"text","data":"19"}]}}],"rid":["b18","b19"],"text":"18-19","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"、电场"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"20","type":"bibr","rid":"b20","data":[{"name":"text","data":"20"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"、温度"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"21","type":"bibr","rid":"b21","data":[{"name":"text","data":"21"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"等多种方法进行调控。这源于外部条件刺激影响液晶分子的取向, 引起器件有效折射率的变化, 进而改变激光器的出射激光特征。2010年, C. R. Lee等人在染料掺杂液晶及染料掺杂聚合物分散液晶体系(Polymer Dispersed Liquid Crystals, PDLC)中实现了对随机激光的全光调控"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"18","type":"bibr","rid":"b18","data":[{"name":"text","data":"18"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"19","type":"bibr","rid":"b19","data":[{"name":"text","data":"19"}]}}],"rid":["b18","b19"],"text":"18-19","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。在2013-2014年, L. H. Ye等人在染料掺杂液晶体系中研究了随机激光的电磁调控与热调控"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"20","type":"bibr","rid":"b20","data":[{"name":"text","data":"20"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"在利用外部能量对液晶激光器进行调控的同时, 科研人员还尝试在液晶激光器中掺杂金属纳米颗粒, 以此来提升激光器性能。J. L. Wang等人在染料掺杂聚合物分散液晶中掺杂了金属铂纳米颗粒"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"22","type":"bibr","rid":"b22","data":[{"name":"text","data":"22"}]}},{"name":"text","data":"]"}]},{"name":"text","data":", 减小了激光出射阈值。L. W. Li等人率先在染料掺杂聚合物分散液晶激光器中掺入了氧化锌纳米颗粒"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"23","type":"bibr","rid":"b23","data":[{"name":"text","data":"23"}]}},{"name":"text","data":"]"}]},{"name":"text","data":", 实现了对激光器性能的提升。而且, 在液晶激光器中掺杂金属纳米颗粒还有助于电场对出射激光的调控, L. H. Ye等人在染料掺杂向列相液晶激光器中掺杂了不同浓度的银离子, 并利用较低的电压实现了对出射随机激光的调控"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"24","type":"bibr","rid":"b24","data":[{"name":"text","data":"24"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。聚合物稳定液晶体系(Polymer Stabilized Liquid Crystals, PSLC)也是一种重要的液晶聚合物复合体系, 其具有驱动电压低, 响应速度快的优点;但是在PSLC中, 液晶所占的比例较高, 因而散射作用较弱, 限制了随机激光性能的提升。通过纳米粒子掺杂, 增强散射特性以提升PSLC的随机激光性能是具有前景的一种方案。不同种类纳米颗粒(如金属纳米颗粒, 介质纳米颗粒等)其散射特性不同, 因而对基于PSLC的液晶随机激光器件的影响也需要深入的对比和研究。"}]},{"name":"p","data":[{"name":"text","data":"一般情况下, 液晶激光器件常制备在平面盒子中, 这种平面盒子对研究液晶器件的性能比较方便, 但在实际应用中, 不利于器件的小型化和集成。因此, 近年来光子晶体光纤以及玻璃微管等二维结构的小型器件开始受到广泛的关注"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"25","type":"bibr","rid":"b25","data":[{"name":"text","data":"25"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。在微管中制备液晶激光器件具有工艺简单, 易于集成等优点。但是微管对液晶的限制为圆柱结构, 其特性与平面结构有所区别, 因而液晶分子的定向以及外加场对其定向的影响也与平面结构有所区别。2014-2015年, J. H. Lin等人将染料掺杂液晶激光器和PDLC激光器制备在不同尺寸的毛细微管中, 并探究了温度对此类激光器性能的影响"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"15","type":"bibr","rid":"b15","data":[{"name":"text","data":"15"}]}}],"rid":["b14","b15"],"text":"14-15","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。2016年, J. Zhang等人在微管中制备了全息聚合物分散液晶激光器。实现了此类激光器的小型化"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"16","type":"bibr","rid":"b16","data":[{"name":"text","data":"16"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。但目前为止, 关于在微管中制备PSLC随机激光器还没有相关报道, 同时纳米颗粒的掺杂对PSLC微管激光出射行为的影响也需要深入的研究。"}]},{"name":"p","data":[{"name":"text","data":"本文研究了银(Ag)和氧化锌(ZnO)纳米颗粒对染料掺杂PSLC液晶微管随机激光器性能的影响。银纳米粒子是较为常见的金属纳米粒子且具有表面等离子共振效应, 而氧化锌则是一般随机激光器中常用的散射材料。为了使纳米颗粒掺杂实验效果更加显著, 首先选取了激光出射阈值适中的聚合物稳定液晶系统。然后, 在选定好的微管激光器中掺杂不同浓度的银和氧化锌纳米颗粒, 来探究其对出射随机激光特征的影响。实验结果表明, 与氧化锌纳米颗粒相比, 适量的银纳米颗粒可以更好地提升随机激光出射特征。本文的研究将有助于提升微管液晶随机激光器的性能, 探究相关的增强机理, 并为其更为广泛的应用奠定实验基础。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"实验"}],"level":"1","id":"s2"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.1"}],"title":[{"name":"text","data":"聚合物稳定液晶微管激光器的制备"}],"level":"2","id":"s2-1"}},{"name":"p","data":[{"name":"text","data":"首先, 将向列相液晶E7、紫外固化胶NOA65、激光染料PM597分别按质量分数90%:9.8%:0.2%;90%:9.65%:0.35%;90%:9.5%:0.5%进行配比, 将其在黑暗条件下充分混合, 依次标记为样品Ⅰ、样品Ⅱ、样品Ⅲ。通过测试比较3种样品的激光出射特征, 选出最适合掺杂纳米颗粒的样品, 在其中分别加入质量分数为0.1%, 0.2%, 0.5%和1.0%的银纳米颗粒(直径10 nm), 以及0.2%, 0.5%, 1.0%, 2.0%和4.0%的氧化锌纳米颗粒(直径20 nm)。将制备好的混合液在黑暗条件下充分混合8 h, 并利用毛细效应将其灌入内径为100"},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"m的毛细玻璃管中。最后, 将微管样品置于20 mW/cm"},{"name":"sup","data":[{"name":"text","data":"2"}]},{"name":"text","data":"的紫外光照下对其进行固化处理, 制备出聚合物稳定液晶微管激光器。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.2"}],"title":[{"name":"text","data":"微管激光器的测试过程"}],"level":"2","id":"s2-2"}},{"name":"p","data":[{"name":"text","data":"微管激光器随机激光出射特征的装置示意图如"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"所示。实验过程中, 用532 nm的Nd:YAG脉冲固体激光器作为泵浦源(脉宽5.32 ns, 重复频率为10 Hz), 对微管激光器进行泵浦激发。为了改变投射在样品上的泵浦能量, 在激光器前依次放置了半波片、偏振片。此后, 泵浦激光被偏振分光棱镜分为两部分, 能量较小的部分由能量计(Thorlabs, PM100D)进行监测, 能量较大的一部分通过狭缝和柱透镜(焦距20 cm)后, 转变成长5 mm, 宽0.5 mm的光束汇聚在样品表面, 为微管激光器激光的出射提供充足的能量。最后, 利用分辨率为0.39 nm的制冷光谱仪(Avantes)对出射的随机激光谱进行收集。"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"测试染料掺杂聚合物稳定液晶微管激光器随机激光出射特征的装置示意图"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"Experimental setup to measure random lasing properties from DDPSLC"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642559&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642559&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642559&type=middle"}]}}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"实验结果与分析"}],"level":"1","id":"s3"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1"}],"title":[{"name":"text","data":"选择适合的聚合物稳定液晶体系"}],"level":"2","id":"s3-1"}},{"name":"p","data":[{"name":"text","data":"为了选出适合研究纳米颗粒掺杂的聚合物稳定液晶系统, 首先对3种未掺杂纳米颗粒的PSLC样品的激光出射特征进行了比较, 如"},{"name":"xref","data":{"text":"图 2(a)","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2(a)"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"2(c)","type":"fig","rid":"Figure2","data":[{"name":"text","data":"2(c)"}]}},{"name":"text","data":"所示。同时, "},{"name":"xref","data":{"text":"图 2(d)","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2(d)"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"2(f)","type":"fig","rid":"Figure2","data":[{"name":"text","data":"2(f)"}]}},{"name":"text","data":"中总结了随机激光谱的峰值强度与半高宽。当泵浦能量较小时, 从微管激光器中只能出射自发辐射荧光谱(Amplified Spontaneous Emission, ASE)。3种样品的出射激光阈值分别是105.8 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"J/pulse, 23.2 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"J/pulse, 6.9 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"J/pulse。随机激光的产生主要是由于激光染料出射的荧光被液晶分子随机定向所形成折射率随机分布微区所散射, 进而形成光子的局域化, 来实现随机激光的出射"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"7","type":"bibr","rid":"b7","data":[{"name":"text","data":"7"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}}],"rid":["b7","b8","b9"],"text":"7-9","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。显然, 激光染料(PM597)掺杂浓度较高的样品(低于荧光淬灭浓度), 其随机激光阈值较低。"}]},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"微管激光器在掺杂不同浓度(a), (b)0.2%;(c), (d)0.35%;(e), (f)0.5%的激光染料时, 随机激光光谱以及相应的峰强和半高宽"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"Random lasing spectra and the corresponding peak intensities and FWHMs from DDPSLC doped with (a), (b) 0.2%; (c), (d) 0.35%; and (e), (f) 0.5% laser dye"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642566&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642566&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642566&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"在研究纳米颗粒掺杂对随机激光阈值和光强影响的实验中, 选择了样品Ⅱ作为标准样品。主要原因如下:"},{"name":"xref","data":{"text":"图 3","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3"}]}},{"name":"text","data":"给出了PM597溶液中掺杂Ag和ZnO纳米颗粒后的吸收和激光染料荧光谱。从"},{"name":"xref","data":{"text":"图 3","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3"}]}},{"name":"text","data":"中可以观察到, PM597溶液中掺杂银和氧化锌纳米颗粒后, 其吸收光谱会与激光染料的荧光谱在520~710 nm处发生重叠, 说明纳米颗粒会对荧光产生部分吸收。由于在样品I中激光染料的掺杂浓度原本较小, 当掺杂纳米颗粒后, 纳米颗粒对荧光的吸收作用反而会对随机激光出射造成负面影响。对于样品Ⅲ, 虽然其阈值小于其它样品, 但掺杂纳米颗粒后其阈值降低的范围太小, 不便于研究纳米颗粒掺杂对阈值的影响。样品Ⅱ的激光出射阈值为23.2"},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"J/pulse, 激光半高宽约为30 nm, 与其它样品相比, 样品Ⅱ的激光可调控范围较适中, 更适合用来研究纳米颗粒对聚合物稳定液晶微管激光器的影响。"}]},{"name":"fig","data":{"id":"Figure3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"PM597溶液吸收谱和荧光谱, 及掺杂银和氧化锌纳米颗粒的PM597溶液的吸收谱"}]},{"lang":"en","label":[{"name":"text","data":"Fig 3"}],"title":[{"name":"text","data":"Absorption spectra and fluorescence spectra of PM597 solutions, and the absorption spectra of PM597 solutions doped with Ag and ZnO NPs"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642571&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642571&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642571&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2"}],"title":[{"name":"text","data":"掺杂不同浓度的银纳米颗粒对微管激光器出射激光特性的影响"}],"level":"2","id":"s3-2"}},{"name":"p","data":[{"name":"text","data":"实验过程中, 我们在样品Ⅱ中掺入了少量的银纳米颗粒, 并观察其对样品出射激光特性的影响。"},{"name":"xref","data":{"text":"图 4(a)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4(a)"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"(d)","type":"fig","rid":"Figure4","data":[{"name":"text","data":"(d)"}]}},{"name":"text","data":"展示了掺杂不同浓度(0.1 %, 0.2 %, 0.5 %, 1.0 %)的银纳米颗粒的聚合物稳定液晶微管激光器的随机激光光谱。"}]},{"name":"fig","data":{"id":"Figure4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"text","data":"掺杂不同浓度(a)0.1%, (b)0.2%, (c) 0.5%, (d)1.0%银纳米颗粒的聚合物稳定液晶微管激光器的出射激光光谱"}]},{"lang":"en","label":[{"name":"text","data":"Fig 4"}],"title":[{"name":"text","data":"Random lasing spectra from DDPSLC doped Ag NPs with different concentrations (a) 0.1%, (b) 0.2%, (c) 0.5%, (d) 1.0%"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642576&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642576&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642576&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"当在样品Ⅱ中掺杂质量分数为0.1 %的银纳米颗粒后, 随机激光出射阈值从23.2 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"J/pulse减小至10.9 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"J/pulse。与此同时, 随机激光峰数目也有所增多且变得更加分立。在相同强度的泵浦能量下, 整个光谱的半高宽也变得更窄。当银纳米颗粒掺杂浓度继续增大时, 随机激光峰会逐渐消失, 激光出射阈值也会开始增大。"},{"name":"xref","data":{"text":"图 5","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5"}]}},{"name":"text","data":"总结了在不同的掺杂浓度下, 银纳米颗粒对微管激光器激光出射阈值的影响。"}]},{"name":"fig","data":{"id":"Figure5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"掺杂不同浓度银纳米颗粒的微管激光器激光出射阈值"}]},{"lang":"en","label":[{"name":"text","data":"Fig 5"}],"title":[{"name":"text","data":"Corresponding lasing thresholds from DDPSLC doped Ag NPs with different concentrations"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642581&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642581&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642581&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"在聚合物稳定液晶微管激光器中掺杂0.1%的银纳米颗粒后, 微管激光器的随机激光出射阈值减小, 激光峰数目增加。实验结果主要由以下两方面原因所造成。一方面, 银纳米颗粒吸收光后会产生局域表面等离子共振效应(localized surface plasmon resonance, LSPR)。LSPR效应会增强纳米结构的局域电磁场, 纳米颗粒表面的部分电子会传递给附近的激光染料, 使更多的激光染料受到激发产生荧光。这部分荧光又可以进一步促使LSPR效应的发生, 从而使激光染料与银纳米颗粒间形成相互耦合。"}]},{"name":"p","data":[{"name":"text","data":"另一方面, 银纳米颗粒的LSPR效应可以增强银纳米颗粒的散射效率。当银纳米颗粒的散射谐振波长与染料荧光相匹配时, 将会有效地增强荧光散射"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"26","type":"bibr","rid":"b26","data":[{"name":"text","data":"26"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"27","type":"bibr","rid":"b27","data":[{"name":"text","data":"27"}]}}],"rid":["b26","b27"],"text":"26-27","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。光子的局域化会因此得到增强, 随机激光更容易形成, 激光出射阈值会有所减小。荧光散射的增强还有助于在微管中形成更多的周期性散射, 激光峰的数目会随之增多。荧光的局域化增益("},{"name":"italic","data":[{"name":"text","data":"g"}]},{"name":"sub","data":[{"name":"text","data":"gain"}]},{"name":"text","data":")可由以下公式表达"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"28","type":"bibr","rid":"b28","data":[{"name":"text","data":"28"}]}},{"name":"text","data":"]"}]},{"name":"text","data":":"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"1"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642586&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642586&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642586&type=middle"}}}],"id":"yjyxs-33-1-14-E1"}}]},{"name":"p","data":[{"name":"text","data":"由式(1)可知, 局域化增益受到去极化系数"},{"name":"italic","data":[{"name":"text","data":"P"}]},{"name":"text","data":", 等离子体频率"},{"name":"italic","data":[{"name":"text","data":"ω"}]},{"name":"sub","data":[{"name":"text","data":"P"}]},{"name":"text","data":", 弛豫率"},{"name":"italic","data":[{"name":"text","data":"Γ"}]},{"name":"text","data":", 谐振波长"},{"name":"italic","data":[{"name":"text","data":"λ"},{"name":"sub","data":[{"name":"text","data":"0"}]}]},{"name":"text","data":", 及带间介电常数"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"b"}]},{"name":"text","data":"等多个因素的影响。而在本实验中, 荧光局域化增益的改变, 主要是由于银纳米颗粒LSPR效应增加了荧光散射效率"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"29","type":"bibr","rid":"b29","data":[{"name":"text","data":"29"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"随着银纳米颗粒掺杂浓度的增加, 随机激光的出射阈值逐渐增大, 分立的激光峰也开始消失。"},{"name":"xref","data":{"text":"图 6(a)","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6(a)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"(d)","type":"fig","rid":"Figure6","data":[{"name":"text","data":"(d)"}]}},{"name":"text","data":"展示了掺杂不同浓度银纳米颗粒的微管激光器的偏光显微镜图片。当掺杂浓度较小时, 银纳米颗粒可以均匀地分布在聚合物稳定液晶当中, 而当掺杂浓度较大时, 银纳米颗粒会开始出现团簇(图中表现为黑色小点), 特别是在"},{"name":"xref","data":{"text":"图 6(d)","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6(d)"}]}},{"name":"text","data":"中情况较为明显。这些团簇会增加吸收损失甚至破坏聚合物稳定液晶的结构, 对光子局域化产生负面影响, 进而影响随机激光出射特征。"}]},{"name":"fig","data":{"id":"Figure6","caption":[{"lang":"zh","label":[{"name":"text","data":"图6"}],"title":[{"name":"text","data":"掺杂不同浓度(a) 0.1%, (b) 0.2%, (c) 0.5%, (d) 1.0%银纳米颗粒的微管激光器的偏光显微镜图片"}]},{"lang":"en","label":[{"name":"text","data":"Fig 6"}],"title":[{"name":"text","data":"Polarizing optical microscope (POM) images of DDPSLC samples doped Ag NPs with different concentrations (a) 0.1%, (b) 0.2%, (c) 0.5%, (d) 1.0%"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642590&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642590&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642590&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.3"}],"title":[{"name":"text","data":"掺杂不同浓度的氧化锌纳米颗粒对微管激光器出射激光特性的影响"}],"level":"2","id":"s3-3"}},{"name":"p","data":[{"name":"text","data":"利用同样的方法, 我们在聚合物稳定液晶中掺杂了质量分数为0.5%, 1.0%, 2.0%, 4.0%的氧化锌纳米颗粒, 并记录了样品随机激光光谱的变化, 如"},{"name":"xref","data":{"text":"图 7(a)","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7(a)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"(d)","type":"fig","rid":"Figure7","data":[{"name":"text","data":"(d)"}]}},{"name":"text","data":"所示。当掺入少量氧化锌纳米颗粒后, 随机激光的半高宽会变窄, 激光峰的数目也会增多。当掺杂浓度达到1.0%时, 微管激光器的随机激光出射阈值会减小至21.2 "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"J/pulse。当掺杂浓度继续增大时, 随机激光峰会逐渐消失, 激光出射阈值也会急剧地增加, 如"},{"name":"xref","data":{"text":"图 8","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8"}]}},{"name":"text","data":"所示。"}]},{"name":"fig","data":{"id":"Figure7","caption":[{"lang":"zh","label":[{"name":"text","data":"图7"}],"title":[{"name":"text","data":"掺杂不同浓度(a) 0.5%, (b) 1.0%, (c) 2.0%, (d) 4.0%氧化锌纳米颗粒的聚合物稳定液晶微管激光器的出射激光光谱"}]},{"lang":"en","label":[{"name":"text","data":"Fig 7"}],"title":[{"name":"text","data":"Random lasing spectra from DDPSLC doped ZnO NPs with different concentrations (a) 0.5%, (b) 1.0%, (c) 2.0%, (d) 4.0%"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642595&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642595&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642595&type=middle"}]}},{"name":"fig","data":{"id":"Figure8","caption":[{"lang":"zh","label":[{"name":"text","data":"图8"}],"title":[{"name":"text","data":"掺杂不同浓度氧化锌纳米颗粒后激光出射阈值的变化"}]},{"lang":"en","label":[{"name":"text","data":"Fig 8"}],"title":[{"name":"text","data":"Corresponding lasing thresholds from DDPSLC doped Ag NPs with different concentrations"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642600&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642600&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642600&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"当掺杂适量的氧化锌纳米颗粒时, PSLC微管激光器出射的随机激光特征会得到改善, 这主要归因于氧化锌纳米颗粒对荧光的散射作用。早在1999年, H. Cao等人就在染料掺杂的氧化锌粉末中实现了随机激光的出射"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"30","type":"bibr","rid":"b30","data":[{"name":"text","data":"30"}]}},{"name":"text","data":"]"}]},{"name":"text","data":", 并且证实了氧化锌纳米颗粒可以对荧光进行周期性光散射, 并实现光子的局域化。氧化锌纳米颗粒作为一种散射介质, 在掺入聚合物稳定液晶之后, 同样可以有效地增强荧光散射"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"28","type":"bibr","rid":"b28","data":[{"name":"text","data":"28"}]}},{"name":"text","data":"]"}]},{"name":"text","data":", 提升随机激光的出射特性。然而, 当氧化锌掺杂浓度较低时, 其对荧光散射的贡献较小, 无法显著提升随机激光出射特征。"},{"name":"xref","data":{"text":"图 9(a)","type":"fig","rid":"Figure9","data":[{"name":"text","data":"图 9(a)"}]}},{"name":"text","data":"到"},{"name":"xref","data":{"text":"(d)","type":"fig","rid":"Figure9","data":[{"name":"text","data":"(d)"}]}},{"name":"text","data":"展示了掺杂不同浓度氧化锌纳米颗粒的微管激光器的偏光显微镜图片, 从"},{"name":"xref","data":{"text":"图 9","type":"fig","rid":"Figure9","data":[{"name":"text","data":"图 9"}]}},{"name":"text","data":"中可以看出, 当氧化锌纳米颗粒掺杂浓度过高时(4.0 %), 同样会出现纳米颗粒团簇, 造成吸收损失, 甚至破坏聚合物稳定液晶的结构, 影响随机激光的出射效率。"}]},{"name":"fig","data":{"id":"Figure9","caption":[{"lang":"zh","label":[{"name":"text","data":"图9"}],"title":[{"name":"text","data":"掺杂不同浓度(a) 0.5%, (b) 1.0%, (c) 2.0%, (d) 4.0%氧化锌纳米颗粒的微管激光器的偏光显微镜图片"}]},{"lang":"en","label":[{"name":"text","data":"Fig 9"}],"title":[{"name":"text","data":"POM images of DDPSLC capillary samples doped ZnO NPs with different concentrations (a) 0.5%, (b) 1.0%, (c) 2.0%, (d) 4.0%"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642604&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642604&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642604&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.4"}],"title":[{"name":"text","data":"银和氧化锌纳米颗粒影响的比较"}],"level":"2","id":"s3-4"}},{"name":"p","data":[{"name":"text","data":"在聚合物稳定液晶微管激光器中掺入适量的银或氧化锌纳米颗粒, 随机激光出射特征均有所提升, 激光出射阈值减小, 激光峰数目增加。与氧化锌纳米颗粒相比较, 银纳米颗粒对微管激光器随机激光特性的提升效果更明显。激光出射特征的改善主要是由于纳米颗粒对荧光的散射作用。实验中所用的银纳米颗粒半径为10 nm, 虽然半径较小, 但其自身具备的LSPR效应会极大增加散射截面, 增强荧光散射效率, 促进随机激光出射。对于氧化锌纳米颗粒, 其半径为20 nm, 稍大于银纳米颗粒, 但其对荧光的散射作用远不如银纳米颗粒, 因而对随机激光特征的提升效果也不是特别显著。通过对比实验结果可知, 掺杂适量的金属纳米颗粒更有助于染料掺杂聚合物稳定液晶随机激光出射特征的提升。当微管激光器中掺杂过量的纳米颗粒时, 均会有纳米颗粒团簇的产生, 反而对随机激光的出射造成负面的影响。因此, 在掺杂纳米颗粒的实验过程中, 合适的掺杂浓度更有利于随机激光出射特征的有效提升。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.5"}],"title":[{"name":"text","data":"纳米颗粒掺杂对聚合物稳定液晶微管激光器稳定性的影响"}],"level":"2","id":"s3-5"}},{"name":"p","data":[{"name":"text","data":"在纳米颗粒掺杂器件中, 纳米颗粒的稳定性是影响器件稳定和寿命的关键因素。在PSLC中, 虽然纳米颗粒与聚合物稳定液晶互不相溶, 当掺杂的量较少时, 纳米颗粒能够长时间均匀地分布在聚合物稳定液晶体系中, 微管激光器的激光出射性能可以长时间保持稳定。为了方便观察纳米颗粒对液晶微滴的影响, 将PSLC激光器制作在了平面液晶盒当中。"},{"name":"xref","data":{"text":"图 10(a)","type":"fig","rid":"Figure10","data":[{"name":"text","data":"图 10(a)"}]}},{"name":"text","data":"~"},{"name":"xref","data":{"text":"(f)","type":"fig","rid":"Figure10","data":[{"name":"text","data":"(f)"}]}},{"name":"text","data":"分别展示了无纳米颗粒掺杂, 掺杂0.1%银纳米颗粒, 掺杂1.0%氧化锌纳米颗粒的聚合物稳定液晶体系在偏光显微镜下48 h时内的变化情况。实验结果表明, 掺杂适量的纳米颗粒并不会影响液晶微滴的形状及分布。与此同时, 还进一步研究了纳米颗粒掺杂后聚合物稳定液晶微管随机激光器吸收性能的稳定性。如"},{"name":"xref","data":{"text":"图 11","type":"fig","rid":"Figure11","data":[{"name":"text","data":"图 11"}]}},{"name":"text","data":"所示, 当掺入适量的银(0.1%)和氧化锌(1.0%)纳米颗粒时, 微管随机激光器吸收性能在48 h内基本无变化。因此, 适量的纳米颗粒掺杂不会对PSLC微管激光器的稳定性造成负面影响。"}]},{"name":"fig","data":{"id":"Figure10","caption":[{"lang":"zh","label":[{"name":"text","data":"图10"}],"title":[{"name":"text","data":"在平面液晶盒中(a), (d)无纳米颗粒掺杂; (b), (e)掺杂0.1%银纳米颗粒; (c), (f)掺杂1.0%氧化锌纳米颗粒的聚合物稳定液晶在偏光显微镜下48 h内的变化"}]},{"lang":"en","label":[{"name":"text","data":"Fig 10"}],"title":[{"name":"text","data":"POM images of DDPSLC in glass cells (a), (d) without doping NPs; (b), (e) doped 0.1% Ag NPs; (c), (f) doped 1.0% ZnO NPs within 48 h"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642609&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642609&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642609&type=middle"}]}},{"name":"fig","data":{"id":"Figure11","caption":[{"lang":"zh","label":[{"name":"text","data":"图11"}],"title":[{"name":"text","data":"(a) 掺杂0.1%银纳米颗粒; (b)掺杂1.0%氧化锌纳米颗粒的聚合物稳定液晶体系在48 h内吸收光谱的变化情况"}]},{"lang":"en","label":[{"name":"text","data":"Fig 11"}],"title":[{"name":"text","data":"Evolution of absorption spectra from DDPSLC (a) doped 0.1% Ag NPs; (b) doped 1.0% ZnO NPs within 48 h"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642614&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642614&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1642614&type=middle"}]}}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"结论"}],"level":"1","id":"s4"}},{"name":"p","data":[{"name":"text","data":"本文研究了纳米颗粒对染料掺杂聚合物稳定液晶微管激光器出射激光的影响。通过在微管激光器中掺杂银纳米颗粒和氧化锌纳米颗粒, 改善了随机激光出射特征。无论银纳米粒子还是氧化锌纳米粒子的掺杂, 均能提升PSLC微管随机激光器件的性能;但是纳米粒子的掺杂均存在优化的比例分数, 如果超过了相应的掺杂比例, 则随机激光器件性能将降低。此外, 由于LSPR效应的存在, 银纳米粒子的掺杂对器件性能的影响大于氧化锌纳米粒子的掺杂。实验结果表明, 0.1%的银纳米粒子掺杂, 可降低随机激光阈值50 %以上。而当氧化锌的掺杂浓度达到1.0%时, 激光出射阈值仅有小幅的降低。总之, 通过优化纳米颗粒的掺杂能够显著提升PSLC微管随机激光器件的性能, 金属纳米粒子的提升效果更为明显, 未来在应用中, 金属纳米粒子的掺杂是具有前景的方案之一。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"en","text":[{"name":"text","data":"WIERSMA D S. The physics and applications of random lasers[J]."},{"name":"italic","data":[{"name":"text","data":"Nature Physics"}]},{"name":"text","data":", 2008, 4(5):359-367."}]}]},{"id":"b2","label":"2","citation":[{"lang":"en","text":[{"name":"text","data":"CAO H. Review on latest developments in random lasers with coherent feedback[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Physics A"}]},{"name":"text","data":":"},{"name":"italic","data":[{"name":"text","data":"Mathematical and General"}]},{"name":"text","data":", 2005, 38(49):10497-10535."}]}]},{"id":"b3","label":"3","citation":[{"lang":"zh","text":[{"name":"text","data":"张伶莉.光调谐的胆甾相液晶应用的发展[J].液晶与显示, 2016, 31(11):1023-1032."}]},{"lang":"en","text":[{"name":"text","data":"ZHANG L L. Development of photo-tunable cholesteric liquid crystals applications[J]."},{"name":"italic","data":[{"name":"text","data":"Chinese Journal of Liquid Crystals and Displays"}]},{"name":"text","data":", 2016, 31(11):1023-1032. (in Chinese)"}]}]},{"id":"b4","label":"4","citation":[{"lang":"zh","text":[{"name":"text","data":"岱钦, 邬小娇, 吴杰, 等.染料掺杂手性向列相液晶激光器的制备和研究[J].液晶与显示, 2014, 29(6):922-925."}]},{"lang":"en","text":[{"name":"text","data":"DAI Q, WU X J, WU J, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Preparation and research of dye-doped chiral nematic liquid crystal[J]."},{"name":"italic","data":[{"name":"text","data":"Chinese Journal of Liquid Crystals and Displays"}]},{"name":"text","data":", 2014, 29(6):922-925. (in Chinese)"}]}]},{"id":"b5","label":"5","citation":[{"lang":"zh","text":[{"name":"text","data":"岱钦, 乌日娜, 杨健, 等.电场作用下染料掺杂液晶器件的激光辐射[J].光学精密工程, 2011, 19(7):1510-1514."}]},{"lang":"en","text":[{"name":"text","data":"DAI Q, WU R N, YANG J, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Laser emission of dye-doped liquid crystal devices under applying voltage[J]."},{"name":"italic","data":[{"name":"text","data":"Optics and Precision Engineering"}]},{"name":"text","data":", 2011, 19(7):1510-1514. (in Chinese)"}]}]},{"id":"b6","label":"6","citation":[{"lang":"zh","text":[{"name":"text","data":"张伶莉, 孙秀东, 刘永军, 等.具有外部谐振腔的胆甾相液晶激光器的研究[J].液晶与显示, 2013, 28(5):679-682."}]},{"lang":"en","text":[{"name":"text","data":"ZHANG L L, SUN X D, LIU Y J, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Cholesteric liquid crystals laser with external cavity[J]."},{"name":"italic","data":[{"name":"text","data":"Chinese Journal of Liquid Crystals and Displays"}]},{"name":"text","data":", 2013, 28(5):679-682. (in Chinese)"}]}]},{"id":"b7","label":"7","citation":[{"lang":"zh","text":[{"name":"text","data":"岱钦, 吴杰, 邬小娇, 等.染料掺杂聚合物分散胆甾相液晶薄膜激光特性研究[J].物理学报, 2015, 64(1):016101."}]},{"lang":"en","text":[{"name":"text","data":"DAI Q, WU J, WU X J, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Study of laser action in dye-doped polymer dispersed cholesteric liquid crystal film[J]."},{"name":"italic","data":[{"name":"text","data":"Acta Physica Sinica"}]},{"name":"text","data":", 2015, 64(1):016101. (in Chinese)"}]}]},{"id":"b8","label":"8","citation":[{"lang":"en","text":[{"name":"text","data":"CHEN C W, JAU H C, WANG C T, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Random lasing in blue phase liquid crystals[J]."},{"name":"italic","data":[{"name":"text","data":"Optics Express"}]},{"name":"text","data":", 2012, 20(21):23978-23984."}]}]},{"id":"b9","label":"9","citation":[{"lang":"zh","text":[{"name":"text","data":"李文萃, 郑致刚, 刘永刚, 等.高对比度低压驱动全息聚合物分散液晶光栅[J].光学精密工程, 2010, 18(7):1504-1510."}]},{"lang":"en","text":[{"name":"text","data":"LI W C, ZHENG Z G, LIU Y G, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". High contrast and low threshold holographic polymer dispersed liquid crystal grating[J]."},{"name":"italic","data":[{"name":"text","data":"Optics and Precision Engineering"}]},{"name":"text","data":", 2010, 18(7):1504-1510. (in Chinese)"}]}]},{"id":"b10","label":"10","citation":[{"lang":"en","text":[{"name":"text","data":"WANG L, WANG M, YANG M C, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization[J]."},{"name":"italic","data":[{"name":"text","data":"Chinese Physics B"}]},{"name":"text","data":", 2016, 25(9):094217."}]}]},{"id":"b11","label":"11","citation":[{"lang":"zh","text":[{"name":"text","data":"乌日娜, 邬小娇, 吴杰, 等.光子晶体液晶光纤随机激光研究[J].光学学报, 2015, 35(2):308-312."}]},{"lang":"en","text":[{"name":"text","data":"WU R, WU X J, WU J, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Research of laser emission in the photonic liquid crystal fiber[J]."},{"name":"italic","data":[{"name":"text","data":"Acta Optica Sinica"}]},{"name":"text","data":", 2015, 35(2):308-312. (in Chinese)"}]}]},{"id":"b12","label":"12","citation":[{"lang":"en","text":[{"name":"text","data":"YANG C K, ZHANG H, LIU B, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Electrically tunable whispering gallery mode microresonator based on a grapefruit-microstructured optical fiber infiltrated with nematic liquid crystals[J]."},{"name":"italic","data":[{"name":"text","data":"Optics Letters"}]},{"name":"text","data":", 2017, 42(15):2988-2991."}]}]},{"id":"b13","label":"13","citation":[{"lang":"en","text":[{"name":"text","data":"ZITO G, PISSADAKIS S. Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber[J]."},{"name":"italic","data":[{"name":"text","data":"Optics Letters"}]},{"name":"text","data":", 2013, 38(17):3253-3256."}]}]},{"id":"b14","label":"14","citation":[{"lang":"en","text":[{"name":"text","data":"LIN J H, HSIAO Y L, CIOU B Y, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary[J]."},{"name":"italic","data":[{"name":"text","data":"IEEE Photonics Journal"}]},{"name":"text","data":", 2015, 7(3):1-9."}]}]},{"id":"b15","label":"15","citation":[{"lang":"en","text":[{"name":"text","data":"LIN J H, HSIAO Y L. Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes[J]."},{"name":"italic","data":[{"name":"text","data":"Optical Materials Express"}]},{"name":"text","data":", 2014, 4(8):1555-1563."}]}]},{"id":"b16","label":"16","citation":[{"lang":"en","text":[{"name":"text","data":"ZHANG J, DAI H T, YAN C, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Lasing properties from dye-doped holographic polymer dispersed liquid crystal confined in two-dimensional cylindrical geometry[J]."},{"name":"italic","data":[{"name":"text","data":"Optical Materials Express"}]},{"name":"text","data":", 2016, 6(4):1367-1375."}]}]},{"id":"b17","label":"17","citation":[{"lang":"en","text":[{"name":"text","data":"CAO M X, ZHANG Y T, SONG X X,"},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Enhanced amplified spontaneous emission in a quantum dot-doped polymer-dispersed liquid crystal[J]."},{"name":"italic","data":[{"name":"text","data":"Nanotechnology"}]},{"name":"text","data":", 2016, 27(26):26LT01."}]}]},{"id":"b18","label":"18","citation":[{"lang":"en","text":[{"name":"text","data":"LEE C R, LIN J D, HUANG B Y, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye[J]."},{"name":"italic","data":[{"name":"text","data":"Optics Express"}]},{"name":"text","data":", 2010, 18(25):25896-25905."}]}]},{"id":"b19","label":"19","citation":[{"lang":"en","text":[{"name":"text","data":"LEE C R, LIN S H, GUO C H, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets[J]."},{"name":"italic","data":[{"name":"text","data":"Optics Express"}]},{"name":"text","data":", 2010, 18(3):2406-2412."}]}]},{"id":"b20","label":"20","citation":[{"lang":"en","text":[{"name":"text","data":"YE L H, LIU B, ZHAO C, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". The electrically and magnetically controllable random laser from dye-doped liquid crystals[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Applied Physics"}]},{"name":"text","data":", 2014, 116(5):053103."}]}]},{"id":"b21","label":"21","citation":[{"lang":"zh","text":[{"name":"text","data":"叶丽慧, 黄玉华, 罗吉祥.温度对染料掺杂胆甾相液晶激光波长的影响及应用[J].中国激光, 2016, 43(1):106002."}]},{"lang":"en","text":[{"name":"text","data":"YEL H, HUANG Y H, LUO J X. Effect of temperature on laser wavelength of dye-doped cholesteric liquid crystal and its applications in temperature sensor[J]."},{"name":"italic","data":[{"name":"text","data":"Chinese Journal of Lasers"}]},{"name":"text","data":", 2016, 43(1):106002. (in Chinese)"}]}]},{"id":"b22","label":"22","citation":[{"lang":"en","text":[{"name":"text","data":"WANG J L, ZHANG Y T, CAO M X, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Platinum-scatterer-based random lasers from dye-doped polymer-dispersed liquid crystals in capillary tubes[J]."},{"name":"italic","data":[{"name":"text","data":"Applied Optics"}]},{"name":"text","data":", 2016, 55(21):5702-5706."}]}]},{"id":"b23","label":"23","citation":[{"lang":"en","text":[{"name":"text","data":"LI L W, WANG L, DENG L G. Low threshold random lasing in DDPDLCs, DDPDLC@ZnO nanoparticles and dye solution@ZnO nanoparticle capillaries[J]."},{"name":"italic","data":[{"name":"text","data":"Laser Physics Letters"}]},{"name":"text","data":", 2014, 11(2):025201."}]}]},{"id":"b24","label":"24","citation":[{"lang":"en","text":[{"name":"text","data":"YE L H, LIU B, LI F J, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals[J]."},{"name":"italic","data":[{"name":"text","data":"Laser Physics Letters"}]},{"name":"text","data":", 2016, 13(10):105001."}]}]},{"id":"b25","label":"25","citation":[{"lang":"zh","text":[{"name":"text","data":"郭玉彬, 葛璜.光纤Bragg光栅的研究[J].光学精密工程, 1999, 7(1):31-38."}]},{"lang":"en","text":[{"name":"text","data":"GUO Y B, GE H. Fabrication of fiber Bragg grating[J]."},{"name":"italic","data":[{"name":"text","data":"Optics and Precision Engineering"}]},{"name":"text","data":", 1999, 7(1):31-38. (in Chinese)"}]}]},{"id":"b26","label":"26","citation":[{"lang":"en","text":[{"name":"text","data":"DICE G D, MUJUMDAR S, ELEZZABI A Y. Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser[J]."},{"name":"italic","data":[{"name":"text","data":"Applied Physics Letters"}]},{"name":"text","data":", 2005, 86(13):131105."}]}]},{"id":"b27","label":"27","citation":[{"lang":"en","text":[{"name":"text","data":"SHI X Y, WANG Y R, WANG Z N, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Random lasing with a high quality factor over the whole visible range based on cascade energy transfer[J]."},{"name":"italic","data":[{"name":"text","data":"Advanced Optical Materials"}]},{"name":"text","data":", 2014, 2(1):88-93."}]}]},{"id":"b28","label":"28","citation":[{"lang":"en","text":[{"name":"text","data":"NOGINOV M A, VONDROVA M, WILLIAMS S N, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Spectroscopic studies of liquid solutions of R6G laser dye and Ag nanoparticle aggregates[J]."},{"name":"italic","data":[{"name":"text","data":"Journal of Optics A"}]},{"name":"text","data":":"},{"name":"italic","data":[{"name":"text","data":"Pure and Applied Optics"}]},{"name":"text","data":", 2005, 7(2):S219-S229."}]}]},{"id":"b29","label":"29","citation":[{"lang":"en","text":[{"name":"text","data":"POPOV O, ZILBERSHTEIN A, DAVIDOV D. Random lasing from dye-gold nanoparticles in polymer films:enhanced gain at the surface-plasmon-resonance wavelength[J]."},{"name":"italic","data":[{"name":"text","data":"Applied Physics Letters"}]},{"name":"text","data":", 2006, 89(19):191116."}]}]},{"id":"b30","label":"30","citation":[{"lang":"en","text":[{"name":"text","data":"CAO H, ZHAO Y G, HO S T, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Random laser action in semiconductor powder[J]."},{"name":"italic","data":[{"name":"text","data":"Physical Review Letters"}]},{"name":"text","data":", 1999, 82(11):2278-2281."}]}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.3788/YJYXS20183301.0014","clc":[[{"name":"text","data":"TN241;O753+.2"}]],"dc":[],"publisherid":"yjyxs-33-1-14","citeme":[],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"国家自然科学基金(No.61177061;No.61405088;No.0401180018);天津市自然科学基金重点项目(No.14JCZDJC31400)"}]},{"lang":"en","text":[{"name":"text","data":"Supported by National Natural Science Foundation of China(No.61177061;No.61405088;No.0401180018);Key project of Nature Science Foundation of Tianjin (No.14JCZDJC31400)"}]}],"history":{"received":"2017-09-18","accepted":"2017-10-17","ppub":"2018-01-05","opub":"2020-06-15"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有©《液晶与显示》编辑部2018"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright ©2018 Chinese Journal of Liquid Crystals and Displays. All rights reserved."}],"type":"copyright"}],"year":"2018"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"液晶与显示","issue":"1","volume":"33","originalSource":[]}