{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"排气方式及工艺参数对等离子体刻蚀a-Si均一性的影响"}]},{"lang":"en","data":[{"name":"text","data":"Influence of exhaust mode and process on uniformity of plasma etching a-Si"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"张","givenname":"立祥","namestyle":"eastern","prefix":""},{"lang":"en","surname":"ZhANG","givenname":"Li-xiang","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":["first-author"],"bio":[{"lang":"zh","text":["张立祥(1988-), 男, 河北邢台人, 硕士研究生, 工程师, 2015年于四川大学获得硕士学位, 主要从事TFT-LCD方面的研究。E-mail:xiangehh@sina.cn"],"graphic":[],"data":[[{"name":"text","data":"张立祥(1988-), 男, 河北邢台人, 硕士研究生, 工程师, 2015年于四川大学获得硕士学位, 主要从事TFT-LCD方面的研究。E-mail:"},{"name":"text","data":"xiangehh@sina.cn"}]]}],"email":"xiangehh@sina.cn","deceased":false},{"name":[{"lang":"zh","surname":"王","givenname":"海涛","namestyle":"eastern","prefix":""},{"lang":"en","surname":"WANG","givenname":"Hai-tao","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":["corresp"],"corresp":[{"rid":"cor1","lang":"zh","text":"王海涛(1982-), 男, 山西原平人, 资深工程师, 主要从事TFT-LCD方面的研究。E-mail:haitao_wang2@tianma.cn","data":[{"name":"text","data":"王海涛(1982-), 男, 山西原平人, 资深工程师, 主要从事TFT-LCD方面的研究。E-mail:haitao_wang2@tianma.cn"}]}],"email":"haitao_wang2@tianma.cn","deceased":false},{"name":[{"lang":"zh","surname":"王","givenname":"尤海","namestyle":"eastern","prefix":""},{"lang":"en","surname":"WANG","givenname":"You-hai","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"夏","givenname":"庆峰","namestyle":"eastern","prefix":""},{"lang":"en","surname":"XIA","givenname":"Qing-feng","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"","text":"中航光电子有限公司, 上海 201100","data":[{"name":"text","data":"中航光电子有限公司, 上海 201100"}]},{"lang":"en","label":"","text":"AVIC Optoelectronics Co., Ltd., Shanghai 201100, China","data":[{"name":"text","data":"AVIC Optoelectronics Co., Ltd., Shanghai 201100, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"本文对在等离子体刻蚀工艺中,功率、压强、气体比例重要参数对a-Si刻蚀均一性的影响进行了研究。采用PECVD成膜、RIE等离子体刻蚀,并通过台阶仪和光谱膜厚测定仪对膜厚进行表征。结果表明压强在10~15 Pa,功率在5 500~6 500 W的参数区间,a-Si刻蚀均一性波动不大,适合工业化生产。a-Si刻蚀速率及刻蚀均一性对气体比例较为敏感,SF"},{"name":"sub","data":[{"name":"text","data":"6"}]},{"name":"text","data":":HCl=800:2 800 mL/min时a-Si刻蚀均一性为最佳。四角排气方式对维持等离子体浓度作用明显,有利于刻蚀均一性的提升。四周排气方式会破坏等离子体浓度进而破坏a-Si刻蚀的均一性。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"The influence of power, pressure and gas ratio on uniformity plasma etching a-Si was studied. The results show that the process of pressure in 10~15 Pa, power in 5 500~6 500 W is suitable for industrial production because a-Si etching uniformity is very stable. Etching rate and uniformity of a-Si is more sensitive to etching gas ratio. When SF"},{"name":"sub","data":[{"name":"text","data":"6"}]},{"name":"text","data":":HCl=800:2 800 mL/min, the etching uniformity of a-Si is the best. Gas exhausting from corners can maintain the plasma concentration obvious, which is conducive to enhance the uniformity of plasma etching. Gas exhausting from around will undermine plasma concentration and thus undermine the uniformity of a-Si etching."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"等离子体刻蚀"}],[{"name":"text","data":"a-Si"}],[{"name":"text","data":"均一性"}],[{"name":"text","data":"排气方式"}]]},{"lang":"en","data":[[{"name":"text","data":"plasma etching"}],[{"name":"text","data":"a-Si"}],[{"name":"text","data":"uniformity"}],[{"name":"text","data":"exhaust mode"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"液晶显示技术目前已经相当成熟。液晶显示屏采用薄膜晶体管作为像素驱动开关,因此称之为TFT-LCD (thin film transistor)。按照开关材料分类,市场主流的技术有:a-Si (非晶硅)、低温多晶硅(LTPS)、IGZO (铟镓锌氧化物)"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"2","type":"bibr","rid":"b2","data":[{"name":"text","data":"2"}]}}],"rid":["b1","b2"],"text":"1-2","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。以a-Si为材料的TFT技术已非常成熟占据市场50%的份额。1986年到2009年是a-Si显示技术应用于电视面板的快速发展时期,进入21世纪随着智能手机问世,a-Si显示技术又开拓了新的市场,但正被以LTPS为主的高端智能手机替代。随着高端智能手机销量的大增,LTPS (低温多晶硅)技术在手机市场的份额突飞猛进,IGZO在有机电致发光方面的研究也成为热点"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"3","type":"bibr","rid":"b3","data":[{"name":"text","data":"3"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。相比其它技术a-Si显示技术在工业化生产中的优势在于其价格低廉、持续引进新技术。目前及未来的一段时间会在在TV显示、工控、车载得到进一步应用。"}]},{"name":"p","data":[{"name":"text","data":"a-Si (非晶硅)是TFT器件的半导体开关材料,而沟道刻蚀的工艺水平直接决定这开关特性的好坏。对于大尺寸基板,如何提高a-Si刻蚀的均一性是一大挑战,这直接关系到开关的电学性质进而影响液晶显示器件的图像质量和产品良率。"}]},{"name":"p","data":[{"name":"text","data":"本文基于5代线TFT基板(1 300 mm×1 100 mm)进行研究。对功率、压强、SF"},{"name":"sub","data":[{"name":"text","data":"6"}]},{"name":"text","data":"/HCl气体比例对a-Si刻蚀的均一性进行研究。对比了实心型Buffer板和滤网型Buffer板在改变真空室工艺气体排气方式后给刻蚀均一性带来的变化。除了采用台阶仪对膜厚进行测量外,还通过光谱膜厚测定仪对膜厚进行了精准的测量。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"RIE等离子刻蚀真空室结构"}],"level":"1","id":"s2"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.1"}],"title":[{"name":"text","data":"RIE等离子的基本构造"}],"level":"2","id":"s2-1"}},{"name":"p","data":[{"name":"text","data":"本文采用如"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"所示的电容耦合等离子刻蚀设备对1 300 mm×1 100 mm的基板进行刻蚀。射频电源加在下电极,气体流量计控制SF"},{"name":"sub","data":[{"name":"text","data":"6"}]},{"name":"text","data":"和HCl等工艺气体的比例,经由上电极的工艺气孔进入真空室。分子泵与机械泵构成抽真空系统。在上下电极之间形成等离子体(plasma), 等离子体鞘层和下电极之间形成电场,实现离子对基板的轰击。"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"等离子刻蚀真空室"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"Chamber of plasma etching"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593848&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593848&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593848&type=middle"}]}}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.2"}],"title":[{"name":"text","data":"Buffer板的基本结构"}],"level":"2","id":"s2-2"}},{"name":"p","data":[{"name":"text","data":"等离子体刻蚀腔室内,在下电极与腔室内壁之间会有一缓冲(Buffer)板,对从上电极进入的工艺气体起到缓冲的作用。"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"是本文实验中涉及到的实心型Buffer板和滤网型Buffer板。实心型Buffer板对工艺气体的缓冲作用最大,使得气体只能从4个角经由分子泵排出,这便是“四角排气”模式。滤网型Buffer板对工艺气体的缓冲作用较弱,气体可以从任意网孔经由分子泵排出,这便是“四周排气”方式。"}]},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"实心型Buffer板和滤网型Buffer板"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"Solid buffer and screen buffer"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593867&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593867&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593867&type=middle"}]}}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"实验"}],"level":"1","id":"s3"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1"}],"title":[{"name":"text","data":"实验设备及仪器"}],"level":"2","id":"s3-1"}},{"name":"p","data":[{"name":"text","data":"等离子体气相沉积(PECVD) 厂商:AKT"}]},{"name":"p","data":[{"name":"text","data":"电容耦合等离子体刻蚀(RIE)  厂商:TEL"}]},{"name":"p","data":[{"name":"text","data":"光谱膜厚测定仪(STM)   型号:ST8K"}]},{"name":"p","data":[{"name":"text","data":"台阶仪(DAN)      厂商:TOHO"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2"}],"title":[{"name":"text","data":"实验步骤"}],"level":"2","id":"s3-2"}},{"name":"p","data":[{"name":"text","data":"通过PECVD在1 300 mm×1 100 mm的玻璃基板上依次沉积300 nm SiN"},{"name":"sub","data":[{"name":"italic","data":[{"name":"text","data":"x"}]}]},{"name":"text","data":"和240 nm a-Si,再经过RIE干法刻蚀设备对第一层a-Si薄膜进行刻蚀。"}]},{"name":"p","data":[{"name":"text","data":"第一部分和第二部分实验均通过台阶仪(DAN)对a-Si的刻蚀量进行测定。"}]},{"name":"p","data":[{"name":"text","data":"第一部分实验主要对比了RIE设备在四角排气和四周排气模式下,对a-Si刻蚀均一性的差异。"}]},{"name":"p","data":[{"name":"text","data":"第二部分实验在实心型Buffer板,四角排气的模式下,通过改变功率、压强、气体比例参数对a-Si进行刻蚀。"}]},{"name":"p","data":[{"name":"text","data":"第三部分实验采用光谱膜厚测定仪(STM)分别测量出成膜后SiN"},{"name":"sub","data":[{"name":"text","data":"x"}]},{"name":"text","data":"和a-Si的膜厚,然后经RIE设备刻蚀,在采用STM测量出刻蚀后a-Si的膜厚。通过光谱膜厚测定仪两次a-Si膜厚的差值计算出RIE设备对a-Si的刻蚀量、刻蚀速率及刻蚀均一性。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"结果与讨论"}],"level":"1","id":"s4"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.1"}],"title":[{"name":"text","data":"排气方式对a-Si刻蚀均一性的影响"}],"level":"2","id":"s4-1"}},{"name":"p","data":[{"name":"text","data":"从"},{"name":"xref","data":{"text":"图 3","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3"}]}},{"name":"text","data":"和"},{"name":"xref","data":{"text":"图 4","type":"fig","rid":"Figure4","data":[{"name":"text","data":"图 4"}]}},{"name":"text","data":"可以看出,滤网型Buffer板的四周排气模式对a-Si的刻蚀均一性较差。这是因为滤网型Buffer板破坏了上下电极之间等离子体的密度。"}]},{"name":"fig","data":{"id":"Figure3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"刻蚀a-Si均一性随压强的变化"}]},{"lang":"en","label":[{"name":"text","data":"Fig 3"}],"title":[{"name":"text","data":"Etching uniformity varies with power"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593890&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593890&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593890&type=middle"}]}},{"name":"fig","data":{"id":"Figure4","caption":[{"lang":"zh","label":[{"name":"text","data":"图4"}],"title":[{"name":"text","data":"刻蚀a-Si均一性随功率的变化"}]},{"lang":"en","label":[{"name":"text","data":"Fig 4"}],"title":[{"name":"text","data":"Etching uniformity varies with power"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593911&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593911&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593911&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"实心型Buffer板能够使等离子体在腔室边缘部分充分保持,从而使基板中央和边缘的刻蚀速率差异较小。滤网型Buffer板则破坏了腔室边缘的等离子体密度,导致基板中央和边缘刻蚀速率差异变大。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.2"}],"title":[{"name":"text","data":"RIE设备工艺参数对a-Si刻蚀均一性的影响"}],"level":"2","id":"s4-2"}},{"name":"p","data":[{"name":"text","data":"从"},{"name":"xref","data":{"text":"图 5","type":"fig","rid":"Figure5","data":[{"name":"text","data":"图 5"}]}},{"name":"text","data":"和"},{"name":"xref","data":{"text":"图 6","type":"fig","rid":"Figure6","data":[{"name":"text","data":"图 6"}]}},{"name":"text","data":"可以看出,功率越大刻蚀速率也越大,刻蚀均一性在5 500 W时较好,为12.51%。这是因为提高射频功率可以提高电子能量和入射离子的能量,也可以提高活性粒子和粒子浓度"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。功率越大,等离子体浓度越大,刻蚀速率也随之增大。但功率过大,等离子体浓度分布不均也会加剧,这就造成a-Si刻蚀均一性的恶化。"}]},{"name":"fig","data":{"id":"Figure5","caption":[{"lang":"zh","label":[{"name":"text","data":"图5"}],"title":[{"name":"text","data":"a-Si刻蚀均一性随功率的变化曲线"}]},{"lang":"en","label":[{"name":"text","data":"Fig 5"}],"title":[{"name":"text","data":"Etching rate varies with pressure"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593931&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593931&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593931&type=middle"}]}},{"name":"fig","data":{"id":"Figure6","caption":[{"lang":"zh","label":[{"name":"text","data":"图6"}],"title":[{"name":"text","data":"a-Si刻蚀速率随功率的变化曲线"}]},{"lang":"en","label":[{"name":"text","data":"Fig 6"}],"title":[{"name":"text","data":"Etching rate varies with power"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593947&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593947&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593947&type=middle"}]}},{"name":"p","data":[{"name":"xref","data":{"text":"图 7","type":"fig","rid":"Figure7","data":[{"name":"text","data":"图 7"}]}},{"name":"text","data":"和"},{"name":"xref","data":{"text":"图 8","type":"fig","rid":"Figure8","data":[{"name":"text","data":"图 8"}]}},{"name":"text","data":"是压强对刻蚀均一性及刻蚀速率的影响。刻蚀均一性开始随压强的增加而降低,压强超过一定值时,刻蚀均一性反而增大"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"5","type":"bibr","rid":"b5","data":[{"name":"text","data":"5"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。这是因为随着压强的升高,反应气体浓度增加,从而使被分解的离子受到碰撞的机率也增加,而损失了较多的能量"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",使离子间重新复合的速度会增加,降低了a-Si表面的离子通量,所以刻蚀速率会有所下降。同时压强增大,驻留时间会增加,反应后的生成物被吸附时间也会有所增加,这也会对刻蚀速率有所影响"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"7","type":"bibr","rid":"b7","data":[{"name":"text","data":"7"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"fig","data":{"id":"Figure7","caption":[{"lang":"zh","label":[{"name":"text","data":"图7"}],"title":[{"name":"text","data":"a-Si刻蚀均一性随压强的变化曲线"}]},{"lang":"en","label":[{"name":"text","data":"Fig 7"}],"title":[{"name":"text","data":"Etching uniformity varies with pressure"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593964&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593964&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593964&type=middle"}]}},{"name":"fig","data":{"id":"Figure8","caption":[{"lang":"zh","label":[{"name":"text","data":"图8"}],"title":[{"name":"text","data":"a-Si刻蚀速率随压强的变化曲线"}]},{"lang":"en","label":[{"name":"text","data":"Fig 8"}],"title":[{"name":"text","data":"Etching rate varies with pressure"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593977&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593977&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593977&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"刻蚀均一性随压强增大先减小后增大。这是因为较小的压强等离子比较分散,这时基板中央的刻蚀速率小于基板边缘。当压强较大时,等离子体会集中于腔室中央,这时基板中央的刻蚀速率要大于基板边缘。基板中央和边缘刻蚀速率的相对变化就是刻蚀均一性的变化。调整压强其实就是调整基板中央和边缘的刻蚀速率,使其均一性达到最小。"}]},{"name":"p","data":[{"name":"xref","data":{"text":"图 9","type":"fig","rid":"Figure9","data":[{"name":"text","data":"图 9"}]}},{"name":"text","data":"和"},{"name":"xref","data":{"text":"图 10","type":"fig","rid":"Figure10","data":[{"name":"text","data":"图 10"}]}},{"name":"text","data":"为SF"},{"name":"sub","data":[{"name":"text","data":"6"}]},{"name":"text","data":"/HCl的气体比例对a-Si刻蚀速率及刻蚀均一性的影响。F基气体是对硅进行等离子体刻蚀常用的工作气体,其电离产生的氟基作为与硅反应并起刻蚀作用的主要成分"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。刻蚀过程中主要反应方程式如下:"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"]"}]}]},{"name":"fig","data":{"id":"Figure9","caption":[{"lang":"zh","label":[{"name":"text","data":"图9"}],"title":[{"name":"text","data":"a-Si刻蚀均一性随气体比例的变化曲线"}]},{"lang":"en","label":[{"name":"text","data":"Fig 9"}],"title":[{"name":"text","data":"Etching uniformity varies with SF"},{"name":"sub","data":[{"name":"text","data":"6"}]},{"name":"text","data":"/HCl"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593991&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593991&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593991&type=middle"}]}},{"name":"fig","data":{"id":"Figure10","caption":[{"lang":"zh","label":[{"name":"text","data":"图10"}],"title":[{"name":"text","data":"a-Si刻蚀速率随气体比例的变化曲线"}]},{"lang":"en","label":[{"name":"text","data":"Fig 10"}],"title":[{"name":"text","data":"Etching rate varies with SF"},{"name":"sub","data":[{"name":"text","data":"6"}]},{"name":"text","data":"/HCl"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594001&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594001&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594001&type=middle"}]}},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"1"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594010&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594010&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594010&type=middle"}}}],"id":"yjyxs-31-12-1112-E1"}}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"2"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594018&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594018&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594018&type=middle"}}}],"id":"yjyxs-31-12-1112-E2"}}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"3"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594026&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594026&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594026&type=middle"}}}],"id":"yjyxs-31-12-1112-E3"}}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"4"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594030&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594030&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594030&type=middle"}}}],"id":"yjyxs-31-12-1112-E4"}}]},{"name":"p","data":[{"name":"text","data":"随着SF"},{"name":"sub","data":[{"name":"text","data":"6"}]},{"name":"text","data":"比例的增加,F自由基浓度增加,刻蚀速率也随之增加。刻蚀均一性随SF"},{"name":"sub","data":[{"name":"text","data":"6"}]},{"name":"text","data":"比例的增加呈现先减小后增大的趋势。这是因为SF"},{"name":"sub","data":[{"name":"text","data":"6"}]},{"name":"text","data":"比例较小时基板边缘反应速率较低,而SF"},{"name":"sub","data":[{"name":"text","data":"6"}]},{"name":"text","data":"比例较大时基板中央的刻蚀速率又过大。因此选择合适的气体比例至关重要。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.3"}],"title":[{"name":"text","data":"光谱膜厚测定仪测试结果分析"}],"level":"2","id":"s4-3"}},{"name":"p","data":[{"name":"text","data":"从"},{"name":"xref","data":{"text":"图 11","type":"fig","rid":"Figure11","data":[{"name":"text","data":"图 11"}]}},{"name":"text","data":"可知,压强在10~15 Pa之间a-Si刻蚀均一性较为稳定,20 Pa下a-Si刻蚀均一性较差。功率5 500~6 500 W,压强在10~15 Pa,SF"},{"name":"sub","data":[{"name":"text","data":"6"}]},{"name":"text","data":":HCl=800:2 800 mL/min的工艺条件下a-Si刻蚀均一性较稳定,均一性小于14%,而且该工艺参数范围可以涵盖设备参数的波动适合工业化生产。"}]},{"name":"fig","data":{"id":"Figure11","caption":[{"lang":"zh","label":[{"name":"text","data":"图11"}],"title":[{"name":"text","data":"STM测定的a-Si刻蚀均一性"}]},{"lang":"en","label":[{"name":"text","data":"Fig 11"}],"title":[{"name":"text","data":"Etching uniformity measured by STM"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594039&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594039&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594039&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"如"},{"name":"xref","data":{"text":"图 12","type":"fig","rid":"Figure12","data":[{"name":"text","data":"图 12"}]}},{"name":"text","data":"从刻蚀速率变化趋势来看,a-Si刻蚀速率对压强的依存关系不大,对功率有较大的依存关系。围可以涵盖设备参数的波动适合工业化生产。"}]},{"name":"fig","data":{"id":"Figure12","caption":[{"lang":"zh","label":[{"name":"text","data":"图12"}],"title":[{"name":"text","data":"STM测定的a-Si刻蚀速率"}]},{"lang":"en","label":[{"name":"text","data":"Fig 12"}],"title":[{"name":"text","data":"Etching rate measured by STM"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594047&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594047&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1594047&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"如"},{"name":"xref","data":{"text":"图 12","type":"fig","rid":"Figure12","data":[{"name":"text","data":"图 12"}]}},{"name":"text","data":"从刻蚀速率变化趋势来看,a-Si刻蚀速率对压强的依存关系不大,对功率有较大的依存关系。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"5"}],"title":[{"name":"text","data":"结论"}],"level":"1","id":"s5"}},{"name":"p","data":[{"name":"text","data":"本文采用PECVD沉积a-Si薄膜再经RIE等离子体刻蚀,并通过台阶仪和光谱膜厚测定仪对膜厚进行表征。对RIE等离子体刻蚀a-Si的均一性进行了研究。"}]},{"name":"p","data":[{"name":"text","data":"(1)实心型Buffer板的四角排气方式对维持等离子体浓度作用明显,有利于刻蚀均一性的提升。四周排气方式会破坏等离子体浓度进而破坏a-Si刻蚀的均一性。"}]},{"name":"p","data":[{"name":"text","data":"(2)射频功率提高可以增加离子轰击能量从而提高刻蚀速率。"}]},{"name":"p","data":[{"name":"text","data":"(3)压强的变化对刻蚀均一性的影响明显。"}]},{"name":"p","data":[{"name":"text","data":"(4) SF"},{"name":"sub","data":[{"name":"text","data":"6"}]},{"name":"text","data":"的比例增加刻蚀速率增加,SF"},{"name":"sub","data":[{"name":"text","data":"6"}]},{"name":"text","data":":HCl=800:2 800 mL/min时刻蚀均一性最优。"}]},{"name":"p","data":[{"name":"text","data":"(5)功率5 500~6 500 W,压强在10~15 Pa,SF"},{"name":"sub","data":[{"name":"text","data":"6"}]},{"name":"text","data":":HCl=800:2 800 mL/min的工艺条件下a-Si刻蚀均一性较稳定,均一性小于14%,而且该工艺参数范围可以涵盖设备参数的波动适合工业化生产。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"zh","text":[{"name":"text","data":"郑康, 铁斌, 唐宗良, 等.TFT-LCD技术的研究进展与发展趋势[J].固体电子学研究与进展, 1999, 19(3):285-293."}]},{"lang":"en","text":[{"name":"text","data":"ZHENG K, TIE B, TANG Z L, et al. Research development and further trends in TFT LCDs technology[J].Research & Progress of Solid State Electronics, 1999, 19(3):285-293.(in Chinese)"}]}]},{"id":"b2","label":"2","citation":[{"lang":"zh","text":[{"name":"text","data":"周雷, 徐苗, 吴为敬, 等.大尺寸金属氧化物TFT面板设计分析[J].发光学报, 2015, 36(5):577-582."}]},{"lang":"en","text":[{"name":"text","data":"ZHOU L XU M, WU W J, et al. Design analysis of large size metal oxide TFT panel[J].Chin.J.Lumin., 2015, 36(5):577-582.(in Chinese)"}]}]},{"id":"b3","label":"3","citation":[{"lang":"zh","text":[{"name":"text","data":"丁磊, 张方辉.负电荷层对a-IGZO TFT阈值电压的影响[J].发光学报, 2015, 36(11):1320-1324."}]},{"lang":"en","text":[{"name":"text","data":"DING L, ZHANG F H.Effects of negative charge layer on the threshold voltage of a-IGZO TFT[J].Chin.J.Lumin., 2015, 36(11):1320-1324.(in Chinese)"}]}]},{"id":"b4","label":"4","citation":[{"lang":"zh","text":[{"name":"text","data":"张锦, 冯伯儒, 杜春雷, 等.反应离子刻蚀工艺因素研究[J].光电工程, 1997, 24(S1):46-51."}]},{"lang":"en","text":[{"name":"text","data":"ZHANG J, FENG B R, DU C L, et al. Research on the technological factors for the reactive ion etching[J].Opto-Electronic Engineering, 1997, 24(S1):46-51.(in Chinese)"}]}]},{"id":"b5","label":"5","citation":[{"lang":"zh","text":[{"name":"text","data":"葛益娴, 王鸣, 戎华.硅的反应离子刻蚀工艺参数研究[J].南京师范大学学报(工程技术版), 2006, 6(3):79-82."}]},{"lang":"en","text":[{"name":"text","data":"GE Y X, WANG M, RONG H.Study on the technological parameters for the reactive ion etching of Si[J].Journal of Nanjing Normal University (Engineering and Technology), 2006, 6(3):79-82.(in Chinese)"}]}]},{"id":"b6","label":"6","citation":[{"lang":"zh","text":[{"name":"text","data":"孙承龙, 戈肖鸿, 王渭源, 等.反应离子深刻蚀(RIE)技术的研究[J].传感器世界, 1996(5):31-35, 46."}]},{"lang":"en","text":[{"name":"text","data":"SUN C L, GE X H, WANG W Y, et al. Research on deep reactive ion etching technology[J].Sensor World, 1996(5):31-35, 46.(in Chinese)"}]}]},{"id":"b7","label":"7","citation":[{"lang":"zh","text":[{"name":"text","data":"王晓光, 朱晓明, 尹延昭.等离子体刻蚀工艺的优化研究[J].中国新技术新产品, 2010(14):22."}]},{"lang":"en","text":[{"name":"text","data":"WANG X G, ZHU X M, YIN Y Z, et al. The optimization of plasma etching technology[J].China New Technologies and Products, 2010(14):22.(in Chinese)"}]}]},{"id":"b8","label":"8","citation":[{"lang":"zh","text":[{"name":"text","data":"蔚伟, 吴晓伟, 吕凡, 等.XeF"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"对SiO"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"/Si的干法刻蚀[J].中国科学技术大学学报, 2009,"},{"name":"text","data":" 39(6):603-607."}]},{"lang":"en","text":[{"name":"text","data":"WEI W, WU X W, LÜ F, et al. SiO"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"/Si dry etching with XeF"},{"name":"sub","data":[{"name":"text","data":"2"}]},{"name":"text","data":"[J].Journal of University of Science and Technology of China, 2009, 39(6):603-607.(in Chinese)"}]}]},{"id":"b9","label":"9","citation":[{"lang":"zh","text":[{"name":"text","data":"王守坤, 袁剑锋, 郭总杰, 等.TFT有源层刻蚀均一性和电学性质的研究[J].液晶与显示, 2015, 30(5):801-806."}]},{"lang":"en","text":[{"name":"text","data":"WANG S K, YUAN J F, GUO Z J, et al. Analysis of etching uniformity of active layers and electrical characteristics of thin film transistor electrode[J].Chinese Journal of Liquid Crystals and Displays, 2015, 30(5):801-806.(in Chinese)"}]}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.3788/YJYXS20163112.1112","clc":[[{"name":"text","data":"TP394.1;TH691.9"}]],"dc":[],"publisherid":"yjyxs-31-12-1112","citeme":[],"fundinggroup":[],"history":{"received":"2016-08-15","accepted":"2016-10-18","ppub":"2016-12-05","opub":"2020-06-15"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有©《液晶与显示》编辑部2016"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright ©2016 Chinese Journal of Liquid Crystals and Displays. All rights reserved."}],"type":"copyright"}],"year":"2016"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"液晶与显示","issue":"12","volume":"31","originalSource":[]}