{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"基于显示器特性的彩色对比敏感度测试"}]},{"lang":"en","data":[{"name":"text","data":"Chromatic contrast sensitivity measurement based on the characteristics of display equipment"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"于","givenname":"洪强","namestyle":"eastern","prefix":""},{"lang":"en","surname":"YU","givenname":"Hong-qiang","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":["first-author"],"bio":[{"lang":"zh","text":["于洪强(1990-),男,黑龙江尚志人,硕士研究生,研究方向为航天工效学显示与照明,航天员视功能。E-mail:50984684@qq.com"],"graphic":[],"data":[[{"name":"text","data":"于洪强(1990-),男,黑龙江尚志人,硕士研究生,研究方向为航天工效学显示与照明,航天员视功能。E-mail:"},{"name":"text","data":"50984684@qq.com"}]]}],"email":"50984684@qq.com","deceased":false},{"name":[{"lang":"zh","surname":"蒋","givenname":"婷","namestyle":"eastern","prefix":""},{"lang":"en","surname":"JIANG","givenname":"Ting","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"王","givenname":"春慧","namestyle":"eastern","prefix":""},{"lang":"en","surname":"WANG","givenname":"Chun-hui","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":""}],"role":["corresp"],"corresp":[{"rid":"cor1","lang":"zh","text":"王春慧(1971-),女,黑龙江双城人,硕士,研究员,主要研究方向为系统仿真技术在工效学中的应用、人机界面分析与测评方法。E-mail:chunhui_89@163.com","data":[{"name":"text","data":"王春慧(1971-),女,黑龙江双城人,硕士,研究员,主要研究方向为系统仿真技术在工效学中的应用、人机界面分析与测评方法。E-mail:chunhui_89@163.com"}]}],"email":"chunhui_89@163.com","deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"","text":"中国航天员科研训练中心 人因工程国防科技重点实验室, 北京 100094","data":[{"name":"text","data":"中国航天员科研训练中心 人因工程国防科技重点实验室, 北京 100094"}]},{"lang":"en","label":"","text":"National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China","data":[{"name":"text","data":"National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"为了获得人眼视觉特性并直接指导工程设计和工效学评价等应用,基于显示器广泛使用的RGB颜色空间,提出了一种彩色对比敏感度定义。首先,生成了彩色对比敏感度阈值测量方法,然后,采集了12名被测试者先后两次每次3个颜色变量10个空间频率的彩色对比敏感度阈值。最后,通过Pearson检验分析先后两次测量结果的相关性,同时绘制出该人群R、G、B三种颜色变量彩色对比敏感度曲线。先后两次测量结果显著相关,R、G、B三种颜色变量对比敏感度曲线变化趋势相似,在空间频率为0.1和0.2 cycle/degree时,分辨阈限显著升高,且R变量分辨阈值整体高于G变量和B变量分辨阈值。测量方法稳定可靠,在极低空间频率时,被测试者分辨阈限较高,对红色核心颜色差异分辨力较弱。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"In order to obtain the specific characteristics of human visual system and support engineering design and ergonomic evaluation directly, a kind of chromatic contrast sensitivity was defined according to RGB color space which was widely used by display equipment. First, a threshold measurement method of chromatic contrast sensitivity was generated.Then 12 participants' data which contained two time periods, three variables and ten spatial frequencies were collected. Finally, Pearsontest analysis was used to measure the correlation of results in two time periods, and chromatic contrast sensitivity curve of three variables (R, G, B) was drawn. The analysis results showed that measuring results in two time periods were significantly correlated. The tendency of three variables' contrast sensitivity curves was similar and the threshold significantly increased when the spatial frequency came to 0.1 and 0.2 cycle/degree. The threshold value of variable R was higher than that of variable G and B on the whole.The reliability of measurement method was verified besides the threshold was high at extremely low spatial frequency and the participants were weak in distinguishing minor differences of red."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"彩色对比敏感度"}],[{"name":"text","data":"RGB颜色空间"}],[{"name":"text","data":"LED显示器"}],[{"name":"text","data":"空间频率"}],[{"name":"text","data":"人眼特性"}]]},{"lang":"en","data":[[{"name":"text","data":"chromatic contrast sensitivity"}],[{"name":"text","data":"RGB color space"}],[{"name":"text","data":"LED display"}],[{"name":"text","data":"spatial frequency"}],[{"name":"text","data":"characteristics of eye"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引 言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"对比敏感度即在亮暗对比变化下,人眼对不同空间频率的正弦光栅视标的识别能力。以不同的空间频率为横坐标,以相应的对比敏感度阈值为纵坐标绘制的对比敏感度函数曲线是评价人眼功能非常重要的指标之一,它反应了人的空间视觉特性"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"3","type":"bibr","rid":"b3","data":[{"name":"text","data":"3"}]}}],"rid":["b1","b2","b3"],"text":"1-3","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。传统的对比敏感度测试方法使用光学系统产生明暗条纹,系统复杂且不易操控。近年来,随着电子计算机技术的发展,显示器成为日常生活中视觉信息的重要呈现体,基于显示器测量人眼对比敏感度函数的方法引起了科研人员的重视,取得了重要进展"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"4","type":"bibr","rid":"b4","data":[{"name":"text","data":"4"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"5","type":"bibr","rid":"b5","data":[{"name":"text","data":"5"}]}}],"rid":["b4","b5"],"text":"4-5","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。Westland等人将显示器测量的人眼对比敏感度函数等视觉特性应用于图片压缩和图像呈现质量评价,但是其主要借鉴了传统黑白亮度对比敏感度测试方法和结果,很少涉及应用性更广的彩色对比敏感度"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}}],"rid":["b6","b7","b8"],"text":"6-8","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。由于彩色的复杂性,一直以来对彩色对比敏感度的研究从概念定义到测试方法都没有定论"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"11","type":"bibr","rid":"b11","data":[{"name":"text","data":"11"}]}}],"rid":["b9","b10","b11"],"text":"9-11","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。Mullen生成了红-绿混合光、黄-蓝混合光的彩色条纹用于测试,采用Michelson的对比度定义,即"},{"name":"italic","data":[{"name":"text","data":"c=(I"}]},{"name":"sub","data":[{"name":"text","data":"max"}]},{"name":"text","data":"-"},{"name":"italic","data":[{"name":"text","data":"I"}]},{"name":"sub","data":[{"name":"text","data":"min"}]},{"name":"text","data":")/("},{"name":"italic","data":[{"name":"text","data":"I"}]},{"name":"sub","data":[{"name":"text","data":"max"}]},{"name":"text","data":"+"},{"name":"italic","data":[{"name":"text","data":"I"}]},{"name":"sub","data":[{"name":"text","data":"min"}]},{"name":"text","data":" ),保持测试系统混合的平均光强为常数,红光(黄光)所占光强比例变化,因而得到了不同红光(黄光)比例下不同空间频率的彩色对比敏感度分辨阈值"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"12","type":"bibr","rid":"b12","data":[{"name":"text","data":"12"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。浙大徐海松团队从均匀颜色空间CIELAB的角度考虑,在等亮度面上选取不同的颜色方向,并将色差阈值的倒数定义为彩色对比敏感度"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"13","type":"bibr","rid":"b13","data":[{"name":"text","data":"13"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}}],"rid":["b13","b14"],"text":"13-14","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。王鹏飞等人基于CIELAB的衍生颜色空间CIELCH,提出了视觉彩度和色调角的彩色对比敏感度测试原理及方法,仿照Michelson对比度定义,定义了彩度对比度和色调角对比度"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"15","type":"bibr","rid":"b15","data":[{"name":"text","data":"15"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。虽然上述几种定义和测量都得到了一些基本的彩色对比敏感度函数曲线,但其应用性并不强,其中一方面原因就是标准的颜色空间并不是目前显示设备广泛采用的RGB颜色空间。"}]},{"name":"p","data":[{"name":"text","data":"现有研究很少关注基于RGB颜色变量的人眼辨别特性,因为RGB颜色空间的呈现效果一定程度上依赖硬件显示设备,但是基于RGB的颜色控制是广泛应用的普通电子设备对颜色的控制方法,反映了电子设备的颜色控制精度。因而,研究基于RGB颜色变量的人眼辨别特性,也就是研究人眼对电子屏幕普遍彩色控制方案的分辨特性,对工程应用和工效学设计、评价等方面有重要意义。正是基于这种考虑,本文提出了一种基于RGB颜色空间的彩色对比敏感度定义和测试方法,并对测试方法的信度进行了验证,同时得到了青年人这种彩色对比敏感度分辨阈值曲线。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"彩色对比敏感度测试方法的生成"}],"level":"1","id":"s2"}},{"name":"p","data":[{"name":"text","data":"在标准的对比敏感度测试中,呈现的是亮度正弦变化的黑白光栅,被测试者恰好能分辨出黑白光栅时亮度的峰值与谷值的差值决定了对比敏感度阈值,其中不同的光栅宽度代表着空间频率的不同。对比敏感度曲线即以空间频率为横坐标,对比敏感度阈值的倒数为纵坐标绘制的一条曲线,是重要的眼科指标。"}]},{"name":"p","data":[{"name":"text","data":"借鉴上述标准的对比敏感度测试方法研制了基于RGB颜色控制方案的彩色对比敏感度测试方法。测试方法的生成分为两个部分,一是用于辨别的彩色光栅的生成,二是采用心理学上的极限法测量分辨阈限。"}]},{"name":"p","data":[{"name":"text","data":"彩色光栅的核心颜色采用国际照明委员会推荐的用于辨色研究的标准值"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"16","type":"bibr","rid":"b16","data":[{"name":"text","data":"16"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",其参数如"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":"。在红、绿、蓝三种核心颜色下,分别采用R、G、B为单一颜色变量,保证其余两个参数不变。由于RGB颜色控制较为粗糙,经过预先实验,发现在测试距离为30 cm,空间频率较低(0~1.0 c/d)时,最小对比度才可能低于人眼分辨阈值,这样避免了“天花板效应”。使用Matlab程序控制光栅周期内颜色变量按正弦变化,定义单一颜色变量峰值和谷值的差值为这种颜色的彩色对比度。传统的对比敏感度测试采集被测试者恰好能分辨出光栅条纹时的对比度值,这种测试过程带有很强的主观性,为了减少这种不利效应,同时生成了参数相同的橫、竖两种光栅条纹,被测试者不仅要分辨出光栅条纹,还要回答出条纹方向("},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":")。这样,共生成了3种核心颜色(3种颜色变量)、10个空间频率、10种对比度、2类条纹方向共600张彩色条纹图片供于辨别("},{"name":"xref","data":{"text":"表 2","type":"table","rid":"Table2","data":[{"name":"text","data":"表 2"}]}},{"name":"text","data":")。彩色条纹图片为正方形,边长为9.957 9°视角,呈现在纯黑色背景上。"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"彩色对比度相同条纹方向不同的两种红色光栅图片及其RGB参数"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"Two kinds of grating with same color contrast but different striping direction and their RGB parameters"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593250&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593250&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593250&type=middle"}]}},{"name":"table","data":{"id":"Table1","caption":[{"lang":"zh","label":[{"name":"text","data":"表1"}],"title":[{"name":"text","data":"三种供辨别的核心颜色参数"}]},{"lang":"en","label":[{"name":"text","data":"Table 1"}],"title":[{"name":"text","data":"Three kinds of color parameters for discrimination"}]}],"note":[],"table":[{"head":[[{"data":[{"name":"text","data":"核心 颜色"}]},{"data":[{"name":"text","data":"L"}]},{"data":[{"name":"text","data":"a"}]},{"data":[{"name":"text","data":"b"}]},{"data":[{"name":"text","data":"R"}]},{"data":[{"name":"text","data":"G"}]},{"data":[{"name":"text","data":"B"}]}]],"body":[[{"data":[{"name":"text","data":"红"}]},{"data":[{"name":"text","data":"44"}]},{"data":[{"name":"text","data":"37"}]},{"data":[{"name":"text","data":"23"}]},{"data":[{"name":"text","data":"165"}]},{"data":[{"name":"text","data":"76"}]},{"data":[{"name":"text","data":"68"}]}],[{"data":[{"name":"text","data":"绿"}]},{"data":[{"name":"text","data":"56"}]},{"data":[{"name":"text","data":"-32"}]},{"data":[{"name":"text","data":"0"}]},{"data":[{"name":"text","data":"55"}]},{"data":[{"name":"text","data":"149"}]},{"data":[{"name":"text","data":"133"}]}],[{"data":[{"name":"text","data":"蓝"}]},{"data":[{"name":"text","data":"36"}]},{"data":[{"name":"text","data":"5"}]},{"data":[{"name":"text","data":"-31"}]},{"data":[{"name":"text","data":"67"}]},{"data":[{"name":"text","data":"84"}]},{"data":[{"name":"text","data":"135"}]}]],"foot":[]}]}},{"name":"table","data":{"id":"Table2","caption":[{"lang":"zh","label":[{"name":"text","data":"表2"}],"title":[{"name":"text","data":"用于辨别的图片参数"}]},{"lang":"en","label":[{"name":"text","data":"Table 2"}],"title":[{"name":"text","data":"600 images used for discrimination"}]}],"note":[],"table":[{"head":[[{"data":[]},{"data":[{"name":"text","data":"核心>颜色"}]},{"data":[{"name":"text","data":"空间频率"}]},{"data":[{"name":"text","data":"彩色对比度"}]},{"data":[{"name":"text","data":"条纹方向"}]}]],"body":[[{"data":[{"name":"text","data":"因素内容"}]},{"data":[{"name":"text","data":"红、绿、蓝"}]},{"data":[{"name":"text","data":"0.1~1.0"}]},{"data":[{"name":"text","data":"0~9"}]},{"data":[{"name":"text","data":"橫、竖"}]}],[{"data":[{"name":"text","data":"水平"}]},{"data":[{"name":"text","data":"3"}]},{"data":[{"name":"text","data":"10"}]},{"data":[{"name":"text","data":"10"}]},{"data":[{"name":"text","data":"2"}]}]],"foot":[]}]}},{"name":"p","data":[{"name":"text","data":"测试过程用E-prime程序进行彩色图片呈现次序的控制和对被试反馈的记录,实现心理学上测量阈限常用的极限法。在每一个空间频率下记录了彩色对比度由大变小刚好不能分辨出条纹方向时的对比度以及彩色对比度由小变大刚好能分辨出条纹方向时的对比度,取2种对比度平均值作为该空间频率下的彩色对比度分辨阈值。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"测量彩色对比敏感度阈值的实验"}],"level":"1","id":"s3"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1"}],"title":[{"name":"text","data":"实验设备及其参数"}],"level":"2","id":"s3-1"}},{"name":"p","data":[{"name":"text","data":"实验用LED显示器型号为DELL P2415Q,sRGB+ΔE<3,Gamma值为2.2,色彩显示稳定准确,23.8 in(60.4 cm),分辨率为3 840×2 160,像素点距0.137 2 mm,条纹宽度设置值分别为38、42、48、54、63、76、95、127、190、380个像素点,测试距离为30 cm,对应的空间频率分别为1.004 2、0.908 6、0.795 0、0.706 7、0.605 7、0.502 1、0.401 7、0.300 5、0.200 8、0.100 4 cycle/degree,为表示简洁,后文中使用1.0、0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、0.1 cycle/degree 十个近似值。"}]},{"name":"p","data":[{"name":"text","data":"实验用设备显卡为GT 740M,2GB DDR3显存,64 bit显存位宽。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2"}],"title":[{"name":"text","data":"被测试者和测试流程"}],"level":"2","id":"s3-2"}},{"name":"p","data":[{"name":"text","data":"共有12名被测试者(6男6女)参与彩色对比敏感度测试,均具有本科及以上学历,年龄在21~28岁之间,视力或矫正视力都在1.0以上,色觉分辨正常。"}]},{"name":"p","data":[{"name":"text","data":"测试总共有两次,均在标准暗室中完成,两次测试间隔至少48 h。在一次测试前,被测试者充分熟悉测试内容和操作方法,并且经历20 min的暗适应和2 min的亮适应,其中亮适应时仅有显示器背景亮度。测试过程中运行前文介绍的E-prime测试程序,依次进行3种核心颜色10个空间频率的彩色对比敏感度阈值测量,被测试者按要求通过键盘反馈条纹方向(横向、竖向或没有条纹),程序自动记录被测试者的反馈结果。测试过程持续约30 min,避免了视疲劳对结果的影响。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"实验结果和讨论"}],"level":"1","id":"s4"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.1"}],"title":[{"name":"text","data":"实验结果"}],"level":"2","id":"s4-1"}},{"name":"p","data":[{"name":"text","data":"整理测试结果,得到12名被试先后两次各自三种颜色变量在不同空间频率下的彩色对比敏感度阈值。采用Pearson检验,对3种颜色变量前后两次的测量结果进行相关性分析,发现两次相应的测量结果显著相关("},{"name":"xref","data":{"text":"表 3","type":"table","rid":"Table3","data":[{"name":"text","data":"表 3"}]}},{"name":"text","data":")。"}]},{"name":"table","data":{"id":"Table3","caption":[{"lang":"zh","label":[{"name":"text","data":"表3"}],"title":[{"name":"text","data":"测试方法信度验证结果"}]},{"lang":"en","label":[{"name":"text","data":"Table 3"}],"title":[{"name":"text","data":"Results of test method reliability test"}]}],"note":[],"table":[{"head":[[{"data":[]},{"data":[{"name":"text","data":"R变量两次结果"}]},{"data":[{"name":"text","data":"G变量两次结果"}]},{"data":[{"name":"text","data":"B变量两次结果"}]}]],"body":[[{"data":[{"name":"text","data":"相关系数"}]},{"data":[{"name":"text","data":"0.946"}]},{"data":[{"name":"text","data":"0.874"}]},{"data":[{"name":"text","data":"0.806"}]}],[{"data":[{"name":"text","data":"显著性"}]},{"data":[{"name":"text","data":" "},{"name":"italic","data":[{"name":"text","data":"P"}]},{"name":"text","data":"<"},{"name":"text","data":"0.001"}]},{"data":[{"name":"text","data":" "},{"name":"italic","data":[{"name":"text","data":"P"}]},{"name":"text","data":"<"},{"name":"text","data":"0.001"}]},{"data":[{"name":"text","data":" "},{"name":"italic","data":[{"name":"text","data":"P"}]},{"name":"text","data":"<"},{"name":"text","data":"0.001"}]}]],"foot":[]}]}},{"name":"p","data":[{"name":"text","data":"将12名被试不同颜色变量的分辨阈限绘制成图,如"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"所示,图中纵坐标为用颜色变量的峰谷差值表示的分辨阈限,横坐标为空间频率。从"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"中可以看出,三种颜色变量曲线变化趋势类似,在空间频率为0.3~1.0 c/d时,曲线平坦,阈限很低,在空间频率为0.1和0.2 c/d时,曲线陡峭,阈限明显升高。"}]},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"12名被试3种颜色变量对比敏感度分辨阈限测试结果"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"3 kinds of contrast sensitivity threshold test results of 12 subjects"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593255&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593255&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593255&type=middle"}]}},{"name":"fig","data":{"id":"Figure3","caption":[{"lang":"zh","label":[{"name":"text","data":"图3"}],"title":[{"name":"text","data":"RGB 彩色对比敏感度分辨阈限对比结果"}]},{"lang":"en","label":[{"name":"text","data":"Fig 3"}],"title":[{"name":"text","data":"Comparison results of RGB color contrast sensitivity threshold"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593259&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593259&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=1593259&type=middle"}]}},{"name":"p","data":[{"name":"text","data":"在每种颜色变量中,取所有被试阈值平均值,得到3种变量的彩色对比敏感度曲线对比图(如"},{"name":"xref","data":{"text":"图 3","type":"fig","rid":"Figure3","data":[{"name":"text","data":"图 3"}]}},{"name":"text","data":"所示),从图中可以看出,B变量和G变量曲线接近,R变量曲线高于B变量和G变量,表明在相同的空间频率下,R变量阈限值高于B和G的阈限值,并且在空间频率为0.1和0.2 c/d时,这种差异较大。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4.2"}],"title":[{"name":"text","data":"讨论"}],"level":"2","id":"s4-2"}},{"name":"p","data":[{"name":"text","data":"已有研究关注了用LCD显示器测量人眼亮度对比敏感度,并与其它测试方法的结果比较,得到了较好的一致性,证明了用LCD显示器测量人眼对比敏感度的可行性"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"5","type":"bibr","rid":"b5","data":[{"name":"text","data":"5"}]}},{"name":"text","data":"]"}]},{"name":"text","data":",但是对测试方法的信度并没有进行说明,可能受到偶然因素的影响。本文提出了一种用LED显示器测量人眼彩色对比敏感度的测试方法,并首先对测试方法本身的信度进行了考察。结果表明,3种变量12名被试前后两次的测量结果显著相关,证明对同一名被测试者测试结果稳定,验证了测试方法的信度。由于彩色的复杂性,彩色对比敏感度的定义和测试方法并没有定论,因此,本文提出的测试方法虽然借鉴了先前的相关研究,测试结果与先前的结果比较并无价值,但本文提出的测试方法有很大的实际意义,由于利用广泛使用的RGB彩色控制方案,测试结果可以直接指导图像压缩、工业设计等工程应用,也是显示器显示水平、图像呈现质量等工效学评价的依据和基础。"}]},{"name":"p","data":[{"name":"text","data":"考虑到RGB彩色控制方案的粗糙性以及目前显示器分辨率的有限性,经过预先实验研究,为了避免“天花板效应”,本测试方法只研究了空间频率为0~1.0 c/d的10空间频率下的彩色对比度分辨阈值,与传统的对比敏感度曲线相比,相当于只研究了低频的部分,但也明确地反应了一些彩色对比度分辨特性。12名被试测试结果趋势类似,整体上看人与人之间差异较小。R、G、B三种颜色变量分辨阈限曲线变化趋势是类似的,在相对较高的空间频率0.3-1.0 c/d时,曲线平坦,阈限很低,表明此时分辨彩色差异的能力很高;在空间频率较低为0.1和0.2 c/d时,曲线陡然上升,阈限明显增大,表明此时分辨彩色差异的能力较低。这种变化趋势与传统亮度对比敏感度的测试结果是类似的"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"17","type":"bibr","rid":"b17","data":[{"name":"text","data":"17"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。"}]},{"name":"p","data":[{"name":"text","data":"三种变量的彩色对比敏感度曲线对比发现,虽然三者的变化趋势类似,但G变量和B变量曲线较为接近,R变量曲线明显较高,说明R变量彩色对比敏感度分辨阈限较高,表明被试对R参数变化的分辨能力较弱。在传统应用中,醒目的红色常被作为警示颜色引起人的注意,而本研究却发现人们更难发现红色参数R的微小变化,相对而言绿色参数G和蓝色参数B的变化更能引起人们的注意。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"5"}],"title":[{"name":"text","data":"结 论"}],"level":"1","id":"s5"}},{"name":"p","data":[{"name":"text","data":"本文着眼于应用性,从被广泛使用的RGB彩色控制方案入手,定义了R、G、B3种颜色参数中唯一的颜色变量参数峰值和谷值的差值作为这种颜色参数的彩色对比敏感度,并设计了E-prime测试程序,完成了用LED显示器测量彩色对比敏感度的测试方法的研制。采用重测法验证了测试方法的信度,测量了青年人群这种彩色对比敏感度分辨阈限,得到了3种变量的彩色对比敏感度曲线,发现其变化趋势在0~1.0 c/d空间频率内与亮度对比敏感度类似,同时发现代表醒目的红色的参数"},{"name":"italic","data":[{"name":"text","data":"R"}]},{"name":"text","data":"微小变化更难引起人的注意。"}]},{"name":"p","data":[{"name":"text","data":"对比敏感度指标已被证明是评价人眼功能的重要的指标之一。现在电子显示的相关研究中,显示界面设计的重要依据是人的对比敏感度特性数据,显然单纯的黑白亮度对比敏感度特性越来越不能满足应用需求。目前,彩色对比敏感度的研究还处于探索阶段,特别是将测量结果与应用直接结合起来还有很多困难,本文提出的测试方法和结果是一种启示,后续还需开展更多更全面的研究。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"en","text":[{"name":"text","data":"PELI E.Contrast sensitivity function and image discrimination[J].Journal of the Optical Society of America A,2001,18(2):283-293."}]}]},{"id":"b2","label":"2","citation":[{"lang":"en","text":[{"name":"text","data":"STRAW A D,RAINSFORD T,O'CARROLL D C.Contrast sensitivity of insect motion detectors to natural images[J].Journal of Vision,2008,8(3):32."}]}]},{"id":"b3","label":"3","citation":[{"lang":"zh","text":[{"name":"text","data":"祁媛媛,张丰菊,于芳蕾,等.人眼对比敏感度的相关影响因素及评价分析[J].眼视光学杂志,2007,9(5):328-331."}]},{"lang":"en","text":[{"name":"text","data":"QI YY,ZHANG F J,YU F L,et al. Analysis of influential factors to the contrast sensitivity on human eyes[J].Chinese Journal of Optometry & Ophthalmology,2007,9(5):328-331.(in Chinese)"}]}]},{"id":"b4","label":"4","citation":[{"lang":"zh","text":[{"name":"text","data":"石俊生,姚军财,余鸿飞,等.用显示器测量人眼衬比度敏感函数[J].光学学报,2007,27(4):744-748."}]},{"lang":"en","text":[{"name":"text","data":"SHI J S,YAO J C,YU H F,et al.Measurement of luminance contrast sensitivity function of human visual system on cathode ray tube display[J].Acta Optica Sinica, 2007,27(4):744-748.(in Chinese)"}]}]},{"id":"b5","label":"5","citation":[{"lang":"zh","text":[{"name":"text","data":"姚军财,申静,何军锋,等.用LCD显示器测量人眼亮度对比度敏感视觉特性[J].液晶与显示,2015,30(6):1063-1069."}]},{"lang":"en","text":[{"name":"text","data":"YAO J C,SHEN J,HE J F,et al. Measuring luminance contrast sensitivity characteristics of human visual system using LCD display[J].Chinese Journal of Liquid Crystals and Displays, 2015,30(6):1063-1069.(in Chinese)"}]}]},{"id":"b6","label":"6","citation":[{"lang":"en","text":[{"name":"text","data":"WESTLAND S,OWENS H,CHEUNG V,et al. Model of luminance contrast-sensitivity function for application to image assessment[J].Color Research & Application, 2006,31(4):315-319."}]}]},{"id":"b7","label":"7","citation":[{"lang":"zh","text":[{"name":"text","data":"林志贤,郭太良,林韵英,等.图像处理技术在低逸出功印刷型FED中的应用[J].发光学报,2007,28(2):263-268."}]},{"lang":"en","text":[{"name":"text","data":"LIN Z X,GUO T L,LIN YY,et al. The application of image processing technology in low-work-function printable field emission display[J].Chinese Journal of Luminescence,2007,28(2):263-268.(in Chinese)"}]}]},{"id":"b8","label":"8","citation":[{"lang":"zh","text":[{"name":"text","data":"金福寿,陈宇,丁铁夫.对比度敏感理论在LED视频图象显示中的应用[J].发光学报,1997,18(2):174-178."}]},{"lang":"en","text":[{"name":"text","data":"JIN F S,CHEN Y,DING T F.The applications of contrast sensitive theory in LED video display[J].Chinese Journal of Luminescence, 1997,18(2):174-178.(in Chinese)"}]}]},{"id":"b9","label":"9","citation":[{"lang":"en","text":[{"name":"text","data":"ROVAMO J M,KANKAANPÄÄ M I,KUKKONEN H.Modelling spatial contrast sensitivity functions for chromatic and luminance-modulated gratings[J].Vision Research,1999,39(14):2387-2398."}]}]},{"id":"b10","label":"10","citation":[{"lang":"en","text":[{"name":"text","data":"OWENS H C,WESTLAND S,VAN DE VELDE K,et al. Contrast sensitivity for lime-purple and cyan-orange gratings[C].Proceedings of the 10th Color and Imaging Conference:Color Science and Engineering Systems,Technologies,Applications,Scottsdale,Arizona:Society for Imaging Science and Technology,2002:145-148."}]}]},{"id":"b11","label":"11","citation":[{"lang":"en","text":[{"name":"text","data":"XU H S,YAGUCHI H.Visual evaluation at scale of threshold to suprathreshold color difference[J].Color Research & Application,2005,30(3):198-208."}]}]},{"id":"b12","label":"12","citation":[{"lang":"en","text":[{"name":"text","data":"MULLEN K T.The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings[J].The Journal of Physiology,1985,359(1):381-400."}]}]},{"id":"b13","label":"13","citation":[{"lang":"zh","text":[{"name":"text","data":"吕玮阁,徐海松,汪哲弘,等.基于不同颜色方向和空间频率的彩色对比灵敏度特性研究[J].光学学报,2011,31(1):0133002."}]},{"lang":"en","text":[{"name":"text","data":"LV W G,XU H S,WANG Z H,et al. Investigation of chromatic contrast sensitivity based on different color directions and spatial frequencies[J].Acta Optica Sinica, 2011,31(1):0133002.(in Chinese)"}]}]},{"id":"b14","label":"14","citation":[{"lang":"zh","text":[{"name":"text","data":"曾旺,徐海松,汪哲弘,等.基于不同颜色背景的人眼辨色阈值特性研究[J].光学学报,2011,31(1):0133001."}]},{"lang":"en","text":[{"name":"text","data":"ZENG W,XU H S,WANG Z H,et al. Investigation of Color Discrimination Threshold Characteristics Under Different Chromatic Backgrounds[J].Acta Optica Sinica,2011,31(1):0133001.(in Chinese)"}]}]},{"id":"b15","label":"15","citation":[{"lang":"zh","text":[{"name":"text","data":"王鹏飞.彩色视觉空间频率响应特性的研究[D].北京:北京印刷学院,2012."},{"name":"uri","data":{"text":[{"name":"text","data":"http://cdmd.cnki.com.cn/article/cdmd-10015-1012324215.htm"}]}}]},{"lang":"en","text":[{"name":"text","data":"WANG P F.Study on the color spatial frequency response of the human visual system[D].Beijing:Beijing Institute of Graphic Communication,2012.(in Chinese)"}]}]},{"id":"b16","label":"16","citation":[{"lang":"en","text":[{"name":"text","data":"ROBERSTSON A R.CIE guidelines for coordinated research on color-difference evaluation[J].Color Research and Application,1978,3(3):149-151."}]}]},{"id":"b17","label":"17","citation":[{"lang":"zh","text":[{"name":"text","data":"宋伟琼,谭浅,夏朝华.正常人对比敏感度的特征[J].国际眼科杂志,2007,7(4):1060-1062."}]},{"lang":"en","text":[{"name":"text","data":"SONG W Q,TAN Q,XIA Z H.Spatial characteristics of contrast sensitivity in normal subjects[J].International Journal of Ophthalmology,2007,7(4):1060-1062.(in Chinese)"}]}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.3788/YJYXS20163107.0655","clc":[[{"name":"text","data":"TN141.9;R857.1"}]],"dc":[],"publisherid":"yjyxs-31-7-655","citeme":[],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"人因工程国防科技重点实验室自主课题(No.SYFD140051806)"}]},{"lang":"en","text":[{"name":"text","data":"Supported by the Foundation of National Key Laboratory of Human Factors Engineering (No.SYFD140051806)"}]}],"history":{"received":"2016-03-07","accepted":"2016-04-11","opub":"2020-06-15"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有 © 《液晶与显示》编辑部 2016"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright © 2016 Chinese Journal of Liquid Crystals and Displays. All rights reserved."}],"type":"copyright"}],"year":"2016"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"液晶与显示","issue":"7","volume":"31","originalSource":[]}