{"defaultlang":"zh","titlegroup":{"articletitle":[{"lang":"zh","data":[{"name":"text","data":"侧位含氟苯乙炔类液晶化合物的微波介电性能"}]},{"lang":"en","data":[{"name":"text","data":"Microwave dielectric properties of fluorine substituted phenylacetylene liquid crystal compounds"}]}]},"contribgroup":{"author":[{"name":[{"lang":"zh","surname":"李","givenname":"诗妍","namestyle":"eastern","prefix":""},{"lang":"en","surname":"LI","givenname":"Shi-yan","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":["first-author"],"bio":[{"lang":"zh","text":["李诗妍(1996-),女,湖北武汉人,硕士研究生,2018年于武汉轻工大学获得学士学位,主要从事液晶材料合成与性能方面的研究。E-mail: lishiyan313@163.com"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"李诗妍"}]},{"name":"text","data":"(1996-),女,湖北武汉人,硕士研究生,2018年于武汉轻工大学获得学士学位,主要从事液晶材料合成与性能方面的研究。E-mail: "},{"name":"text","data":"lishiyan313@163.com"}]]}],"email":"lishiyan313@163.com","deceased":false},{"name":[{"lang":"zh","surname":"王","givenname":"婵","namestyle":"eastern","prefix":""},{"lang":"en","surname":"WANG","givenname":"Chan","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"关","givenname":"金涛","namestyle":"eastern","prefix":""},{"lang":"en","surname":"GUAN","givenname":"Jin-tao","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"张","givenname":"智勇","namestyle":"eastern","prefix":""},{"lang":"en","surname":"ZHANG","givenname":"Zhi-yong","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff1","text":"1"}],"role":["corresp"],"corresp":[{"rid":"cor1","lang":"zh","text":"张智勇, E-mail:zzy6211@162.com","data":[{"name":"text","data":"张智勇, E-mail:zzy6211@162.com"}]}],"bio":[{"lang":"zh","text":["张智勇(1962-),男,湖北武汉人,硕士,教授,1992年于南京大学获得硕士学位,主要从事液晶材料的合成与性能方面的研究。E-mail: zzy6211@162.com"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"张智勇"}]},{"name":"text","data":"(1962-),男,湖北武汉人,硕士,教授,1992年于南京大学获得硕士学位,主要从事液晶材料的合成与性能方面的研究。E-mail: "},{"name":"text","data":"zzy6211@162.com"}]]}],"email":"zzy6211@162.com","deceased":false},{"name":[{"lang":"zh","surname":"汪","givenname":"相如","namestyle":"eastern","prefix":""},{"lang":"en","surname":"WANG","givenname":"Xiang-ru","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff2","text":"2"}],"role":[],"deceased":false},{"name":[{"lang":"zh","surname":"高","givenname":"时汉","namestyle":"eastern","prefix":""},{"lang":"en","surname":"GAO","givenname":"Shi-han","namestyle":"western","prefix":""}],"stringName":[],"aff":[{"rid":"aff3","text":"3"}],"role":["corresp"],"corresp":[{"rid":"cor2","lang":"zh","text":"高时汉, E-mail:sh.gao@haige.com","data":[{"name":"text","data":"高时汉, E-mail:sh.gao@haige.com"}]}],"bio":[{"lang":"zh","text":["高时汉 (1965-),男,安徽安庆人,硕士,高级工程师,1993年于华中科技大学获得硕士学位,主要从事卫星通信系统设计方面的研究。E-mail: sh.gao@haige.com"],"graphic":[],"data":[[{"name":"bold","data":[{"name":"text","data":"高时汉"}]},{"name":"text","data":" (1965-),男,安徽安庆人,硕士,高级工程师,1993年于华中科技大学获得硕士学位,主要从事卫星通信系统设计方面的研究。E-mail: "},{"name":"text","data":"sh.gao@haige.com"}]]}],"email":"sh.gao@haige.com","deceased":false}],"aff":[{"id":"aff1","intro":[{"lang":"zh","label":"1","text":"武汉轻工大学 化学与环境工程学院, 湖北 武汉 430023","data":[{"name":"text","data":"武汉轻工大学 化学与环境工程学院, 湖北 武汉 430023"}]},{"lang":"en","label":"1","text":"Department of Chemistry and Environmental Engineering, Wuhan Polytechnic University, WuHan 430023, China","data":[{"name":"text","data":"Department of Chemistry and Environmental Engineering, Wuhan Polytechnic University, WuHan 430023, China"}]}]},{"id":"aff2","intro":[{"lang":"zh","label":"2","text":"电子科技大学 光电科学与工程学院, 四川 成都 611730","data":[{"name":"text","data":"电子科技大学 光电科学与工程学院, 四川 成都 611730"}]},{"lang":"en","label":"2","text":"School of Electronic Science and Engineering, University of Electronic Science and Technology, Chengdu 611730, China","data":[{"name":"text","data":"School of Electronic Science and Engineering, University of Electronic Science and Technology, Chengdu 611730, China"}]}]},{"id":"aff3","intro":[{"lang":"zh","label":"3","text":"广州海格通信集团股份有限公司, 广东 广州 510663","data":[{"name":"text","data":"广州海格通信集团股份有限公司, 广东 广州 510663"}]},{"lang":"en","label":"3","text":"Guangzhou Haige Communication Group Incorporated Company, Guangzhou 510663, China","data":[{"name":"text","data":"Guangzhou Haige Communication Group Incorporated Company, Guangzhou 510663, China"}]}]}]},"abstracts":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"近年来基于液晶材料的微波通信器件研究发展迅速,液晶材料的介电损耗成为制约微波器件发展的瓶颈,然而目前对微波用液晶材料性能报道较少。本文以低熔点高双折射侧位含氟苯乙炔类液晶作为研究对象,将其按一定比例掺杂到母体液晶MA中,采用矩形谐振腔微扰法测试所选液晶化合物在微波频段(10~30 GHz)下的介电性能,探讨分子结构对微波频段液晶介电性能的影响作用。实验结果表明:在高频时的液晶介电各向异性与分子极性和双折射率相关,侧位含氟苯乙炔类和端基异硫氰基苯乙炔类液晶化合物均具有较大的介电各向异性(Δ"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"text","data":" "},{"name":"text","data":">"},{"name":"text","data":" 0.85);对于具有较高双折射率的对称含氟三苯二炔类和三苯乙炔异硫氰基类液晶化合物表现出较低的介电损耗(tan "},{"name":"italic","data":[{"name":"text","data":"δε"}]},{"name":"sub","data":[{"name":"text","data":"r⊥"}]},{"name":"text","data":" "},{"name":"text","data":"<"},{"name":"text","data":" 8.0×10 "},{"name":"sup","data":[{"name":"text","data":"-3"}]},{"name":"text","data":",18 GHz),而异硫氰基的含氟二苯乙炔类和不对称含氟三苯二炔类液晶化合物则表现出较高的介电损耗(tan"},{"name":"italic","data":[{"name":"text","data":"δε"}]},{"name":"sub","data":[{"name":"text","data":"r⊥"}]},{"name":"text","data":" "},{"name":"text","data":">"},{"name":"text","data":" 8.0×10 "},{"name":"sup","data":[{"name":"text","data":"-3"}]},{"name":"text","data":",18 GHz)。"}]}]},{"lang":"en","data":[{"name":"p","data":[{"name":"text","data":"In recent years, the research of liquid crystal microwave communication devices has developed rapidly. The high dielectric loss of liquid crystal materials has become a bottleneck restricting the development of microwave devices. There are few reports on the properties of liquid crystal materials at microwaves. Therefore, we take the fluorine substituted tolane-type compounds with low melting point and high birefringence as the research object, doping them into the liquid crystal matrix MA in a certain proportion respectively, and testing them at microwave k-band (10~30 GHz) through the rectangular cavity perturbation method. And then, the influence of molecular structure on the dielectric properties of liquid crystals at microwave frequency is discussed.The experimental results show that dielectric anisotropy at high-frequency is related to the polarity of liquid crystal molecules and birefringence. The lateral fluorophenyl phenylacetylene and terminal isothiocyano phenylacetylene liquid crystal compounds exhibit high dielectric anisotropy(Δ"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"text","data":">"},{"name":"text","data":"0.85). Triphenyl diacetylenes substituted by F-atom symmetrically and triphenyl acetylene liquid crystal compounds with terminal isothiocyanate exhibit lower dielectric loss(tan"},{"name":"italic","data":[{"name":"text","data":"δε"}]},{"name":"sub","data":[{"name":"text","data":"r⊥"}]},{"name":"text","data":" "},{"name":"text","data":"<"},{"name":"text","data":" 0.008, 18 GHz) due to higher birefringence. Fluorinated diphenylacetylenes with terminal isothiocyanates and triphenyldiyne substituted with fluorine asymmetrically liquid crystal compounds show higher dielectric loss(tan "},{"name":"italic","data":[{"name":"text","data":"δε"}]},{"name":"sub","data":[{"name":"text","data":"r⊥"}]},{"name":"text","data":">"},{"name":"text","data":"0.008, 18 GHz)."}]}]}],"keyword":[{"lang":"zh","data":[[{"name":"text","data":"炔类液晶"}],[{"name":"text","data":"微波K频段"}],[{"name":"text","data":"介电各向异性"}],[{"name":"text","data":"介电损耗"}],[{"name":"text","data":"侧位含氟"}],[{"name":"text","data":"异硫氰基"}]]},{"lang":"en","data":[[{"name":"text","data":"acetylene liquid crystal"}],[{"name":"text","data":"microwave K-band"}],[{"name":"text","data":"dielectric anisotropy"}],[{"name":"text","data":"dielectric loss"}],[{"name":"text","data":"lateral fluorine"}],[{"name":"text","data":"isothiocyano"}]]}],"highlights":[],"body":[{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"1"}],"title":[{"name":"text","data":"引言"}],"level":"1","id":"s1"}},{"name":"p","data":[{"name":"text","data":"向列相液晶(LC)是一种介于固态和液体之间兼具晶体的各向异性与液体的流动性的物质,由于其对电场和磁场具有介电可调谐特性,已广泛应用于平板显示等领域"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"1","type":"bibr","rid":"b1","data":[{"name":"text","data":"1"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"5","type":"bibr","rid":"b5","data":[{"name":"text","data":"5"}]}}],"rid":["b1","b2","b3","b4","b5"],"text":"1-5","type":"bibr"}},{"name":"text","data":"]"}]},{"name":"text","data":"。近年来研究发现微波频段下液晶材料的介电各向异性可通过改变外加电场或磁场实现连续可调谐控制,并且具有低压调制、功耗低等优点,可应用于移相器"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"、滤波器"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"7","type":"bibr","rid":"b7","data":[{"name":"text","data":"7"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"、反射阵列"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"7","type":"bibr","rid":"b7","data":[{"name":"text","data":"7"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"、可重构天线"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"、偏振器"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"8","type":"bibr","rid":"b8","data":[{"name":"text","data":"8"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"和可调谐振器"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"9","type":"bibr","rid":"b9","data":[{"name":"text","data":"9"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"等微波器件,受到人们的广泛关注,基于液晶材料的微波器件设计与研制成为国内外热门研究领域之一。然而,目前商用液晶材料(LCM)存在微波频段介电损耗大,介电各向异性低等缺陷,导致微波器件可调谐范围小和介电插损高,成为制约微波器件研究和发展的瓶颈。"}]},{"name":"p","data":[{"name":"text","data":"研究表明液晶材料在微波频段的介电损耗与介电常数主要与液晶化合物的分子结构、分子介电各向异性和双折射率等因素有关"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"10","type":"bibr","rid":"b10","data":[{"name":"text","data":"10"}]}},{"name":"text","data":"]"}]},{"name":"text","data":";而液晶分子的双折射率又与分子共轭程度相关,因此设计合成高双折射率、高介电各向异性、低介电损耗的液晶化合物进而调整材料配方,是研制微波器件优良介电性能液晶材料的关键。"}]},{"name":"p","data":[{"name":"text","data":"Herman等人于2013年"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"11","type":"bibr","rid":"b11","data":[{"name":"text","data":"11"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"和2015年"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"12","type":"bibr","rid":"b12","data":[{"name":"text","data":"12"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"分别报道了高Δ"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"值(≥ 0.5)异硫氰基-侧向含氟三苯二乙炔类LC化合物,但熔点太高(m.p.≥ 147.3 ℃),且缺少对液晶化合物在微波下的介电性能分析。2018年Kowerdziej等"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"13","type":"bibr","rid":"b13","data":[{"name":"text","data":"13"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"报道了含氟二苯乙炔异硫氰酸酯类液晶组合物在6 GHz频段的可调谐性随温度的变化情况,发现异硫氰基和乙炔基等结构单元对微波比较稳定。Michael Wittek等"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"14","type":"bibr","rid":"b14","data":[{"name":"text","data":"14"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"以二苯乙炔类与环己烷二联苯类液晶化合物按不同比例配制混晶,其在19 GHz下的垂直电损耗为0.012,这与实际应用要求仍有一定距离。尽管文献报道的液晶组合物在高频下的介电性能取得了明显的改进,但受制于液晶材料种类和测试手段的限制,有关液晶化合物在微波下介电性能研究报道较少,尤其是低熔点含氟类液晶化合物的研究报道更少。"}]},{"name":"p","data":[{"name":"text","data":"为满足微波器件在K频段性能要求,进一步深入了解和认识官能团和分子结构对液晶高频介电性能的影响,本文将按照微波移相器介电性能要求(最大介电损耗tan"},{"name":"italic","data":[{"name":"text","data":"δε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"⊥"}]},{"name":"text","data":"≤ 0.012,Δ"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"text","data":" ≥ 0.8),以不同结构的高光学各向异性含氟苯乙炔类液晶化合物为研究对象,将其与低熔点三苯二炔类母体液晶MA配制成不同向列相液晶组合物(MB~MF),通过矩形谐振腔微扰法测试其在10~30 GHz频段的介电性能,探讨液晶分子结构对液晶材料在微波K频段介电性能的影响作用,以期揭示高频下侧位含氟多苯乙炔类化合物对液晶材料的介电性能影响规律。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2"}],"title":[{"name":"text","data":"实验"}],"level":"1","id":"s2"}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.1"}],"title":[{"name":"text","data":"材料与仪器"}],"level":"2","id":"s2-1"}},{"name":"p","data":[{"name":"text","data":"材料:2-乙基-4-((4-正丁基苯基)乙炔基)-1-((4-丙基苯基)乙炔基)苯(化合物A1),2-乙基-1-((4-正丁基苯基)乙炔基)-4-((4-正丁基苯基)乙炔基)苯(化合物A2),2-乙基-4-((4-戊基苯基)乙炔基)-1-((4-乙基苯基)乙炔基)苯(化合物A3),2-乙基-4-((4-己基苯基)乙炔基)-1-((4-丙基苯基)乙炔基)苯(化合物A4);2-甲基-4-((2, 6-二氟-4-正丁基苯基)乙炔基)-1-((4-戊基苯基)乙炔基)苯(化合物B);2-氟-4-((2, 6-二氟-4-丙基苯基)乙炔基)-1-((4-戊基苯基)乙炔基)苯(化合物C);4-((2, 6-二氟-4-丙基苯基)乙炔基)-1-(4-丙基)联苯(化合物D);4-((3-氟-4-异硫氰酸根合苯基)乙炔基)-4'-戊基-1, 1'-联苯(化合物E);2-氟-1-异硫氰酸根合-4-((4-戊基苯基)乙炔基)苯(化合物F)。它们均由本课题组自己合成,其中化合物A参照文献["},{"name":"xref","data":{"text":"15","type":"bibr","rid":"b15","data":[{"name":"text","data":"15"}]}},{"name":"text","data":"]合成,化合物B和C参照文献["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"16","type":"bibr","rid":"b16","data":[{"name":"text","data":"16"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"17","type":"bibr","rid":"b17","data":[{"name":"text","data":"17"}]}}],"rid":["b16","b17"],"text":"16-17","type":"bibr"}},{"name":"text","data":"]合成,化合物D~F分别参照文献["},{"name":"blockXref","data":{"data":[{"name":"xref","data":{"text":"18","type":"bibr","rid":"b18","data":[{"name":"text","data":"18"}]}},{"name":"text","data":"-"},{"name":"xref","data":{"text":"22","type":"bibr","rid":"b22","data":[{"name":"text","data":"22"}]}}],"rid":["b18","b19","b20","b21","b22"],"text":"18-22","type":"bibr"}},{"name":"text","data":"]合成,具体结构如"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":"所示。"}]},{"name":"table","data":{"id":"Table1","caption":[{"lang":"zh","label":[{"name":"text","data":"表1"}],"title":[{"name":"text","data":"不同苯乙炔类液晶化合物的介晶性能"}]},{"lang":"en","label":[{"name":"text","data":"Table 1"}],"title":[{"name":"text","data":"Photoelectric properties of different diphenylacetylene liquid crystal compounds"}]}],"note":[],"table":[{"head":[[{"align":"center","data":[{"name":"text","data":"Compd."}]},{"align":"center","data":[{"name":"text","data":"Structure"}]},{"align":"center","data":[{"name":"text","data":"Phase Trans. Temp./℃"}]},{"align":"center","data":[{"name":"text","data":"Δ"},{"name":"italic","data":[{"name":"text","data":"n"}]}]}]],"body":[[{"align":"center","data":[{"name":"text","data":"A1:"},{"name":"italic","data":[{"name":"text","data":"m"}]},{"name":"text","data":"=4, "},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"=3 "},{"name":"text","data":""},{"name":"text","data":"A2:"},{"name":"italic","data":[{"name":"text","data":"m"}]},{"name":"text","data":"=4, "},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"=4 "},{"name":"text","data":""},{"name":"text","data":" A3:"},{"name":"italic","data":[{"name":"text","data":"m"}]},{"name":"text","data":"=5, "},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"=2 "},{"name":"text","data":""},{"name":"text","data":"A4:"},{"name":"italic","data":[{"name":"text","data":"m"}]},{"name":"text","data":"=6, "},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"=3"}]},{"align":"center","data":[{"name":"text","data":" "},{"name":"inlineformula","data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576445&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576445&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576445&type=middle"}}}]},{"name":"text","data":" "}]},{"align":"center","data":[{"name":"text","data":"Cr 42.1 N 133.4 Iso "},{"name":"text","data":""},{"name":"text","data":"Cr 29.7 N 115.3 Iso "},{"name":"text","data":""},{"name":"text","data":" Cr 28.4 N 106.3 Iso "},{"name":"text","data":""},{"name":"text","data":"Cr 14.6 N 107.8 Iso"}]},{"align":"center","data":[{"name":"text","data":"0.406"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"15","type":"bibr","rid":"b15","data":[{"name":"text","data":"15"}]}},{"name":"text","data":"]"}]},{"name":"text","data":""},{"name":"text","data":"0.411"},{"name":"text","data":""},{"name":"text","data":"0.403"},{"name":"text","data":""},{"name":"text","data":"0.409"}]}],[{"align":"center","data":[{"name":"text","data":"B"}]},{"align":"center","data":[{"name":"text","data":" "},{"name":"inlineformula","data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576450&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576450&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576450&type=middle"}}}]},{"name":"text","data":" "}]},{"align":"center","data":[{"name":"text","data":"Cr 79.1 N 142.6 Iso"}]},{"align":"center","data":[{"name":"text","data":"0.397"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"16","type":"bibr","rid":"b16","data":[{"name":"text","data":"16"}]}},{"name":"text","data":"]"}]}]}],[{"align":"center","data":[{"name":"text","data":"C"}]},{"align":"center","data":[{"name":"inlineformula","data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576454&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576454&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576454&type=middle"}}}]},{"name":"text","data":" "}]},{"align":"center","data":[{"name":"text","data":"Cr 77.9 N 184.8 Iso"}]},{"align":"center","data":[{"name":"text","data":"0.383"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"17","type":"bibr","rid":"b17","data":[{"name":"text","data":"17"}]}},{"name":"text","data":"]"}]}]}],[{"align":"center","data":[{"name":"text","data":"D"}]},{"align":"center","data":[{"name":"inlineformula","data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576458&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576458&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576458&type=middle"}}}]},{"name":"text","data":" "}]},{"align":"center","data":[{"name":"text","data":"Cr 38.5 Sm 60.0 N 174.0 Iso"}]},{"align":"center","data":[{"name":"text","data":"0.359"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"18","type":"bibr","rid":"b18","data":[{"name":"text","data":"18"}]}},{"name":"text","data":"]"}]}]}],[{"align":"center","data":[{"name":"text","data":"E"}]},{"align":"center","data":[{"name":"inlineformula","data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576461&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576461&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576461&type=middle"}}}]},{"name":"text","data":" "}]},{"align":"center","data":[{"name":"text","data":"Cr 140.8 N 241.3 Iso"}]},{"align":"center","data":[{"name":"text","data":"0.480"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"19","type":"bibr","rid":"b19","data":[{"name":"text","data":"19"}]}},{"name":"text","data":"]"}]}]}],[{"align":"center","data":[{"name":"text","data":"F"}]},{"align":"center","data":[{"name":"inlineformula","data":[{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576465&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576465&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576465&type=middle"}}}]},{"name":"text","data":" "}]},{"align":"center","data":[{"name":"text","data":"Cr 50.6 N 90.6 Iso"}]},{"align":"center","data":[{"name":"text","data":"0.401"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"24","type":"bibr","rid":"b24","data":[{"name":"text","data":"24"}]}},{"name":"text","data":"]"}]}]}]],"foot":[]}]}},{"name":"p","data":[{"name":"text","data":"仪器:X-4型数字显微熔点仪(北京泰克公司)、Q-10型差示扫描量热仪(TA公司)、XPN-100E投射偏光熔点测定仪(上海长方公司)、ZC36型高阻计(上海第六电表厂有限公司)、AR2140型电子天平(梅特勒-托利多仪器(上海)有限公司出品)、直流高压电源HB-Z303-0.5 AC(天津市恒博高压电源厂)、N5234B型矢量网络分析仪(美国是德科技有限公司)、直流电磁铁(0.5~1.0 T)(成都恩驰微波科技有限公司)。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.2"}],"title":[{"name":"text","data":"液晶化合物纯化"}],"level":"2","id":"s2-2"}},{"name":"p","data":[{"name":"text","data":"本文主要通过外加电场吸附提纯法对化合物进行精制"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"23","type":"bibr","rid":"b23","data":[{"name":"text","data":"23"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"。将室温下为固态的液晶化合物溶于有机溶剂中,在强电场迁移作用以及高效吸附剂作用下进行提纯精制,除去微量无机杂质与大极性有机杂质,得到高电阻率液晶化合物样品,其电阻率达到6.0×10"},{"name":"sup","data":[{"name":"text","data":"11"}]},{"name":"text","data":"Ω·cm以上。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.3"}],"title":[{"name":"text","data":"液晶组合物制备"}],"level":"2","id":"s2-3"}},{"name":"p","data":[{"name":"text","data":"液晶组合物制备是在湿度为40%左右的洁净环境下经过加热、搅拌而得,使用的是干燥洁净的高硼硅玻璃器皿。"}]},{"name":"p","data":[{"name":"text","data":"母体液晶MA由100%侧位乙基取代三苯二炔类液晶化合物(化合物A1~A4)组成。"}]},{"name":"p","data":[{"name":"text","data":"组合物MB~MF由80%母体液晶MA分别与20%炔类液晶化合物B~F混合配制而成。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.4"}],"title":[{"name":"text","data":"液晶组合物介电性能测试方法"}],"level":"2","id":"s2-4"}},{"name":"p","data":[{"name":"text","data":"本文所涉及的液晶组合物均在成都恩驰微波科技有限公司测试,采用矩形谐振腔微扰法"},{"name":"sup","data":[{"name":"text","data":"["},{"name":"xref","data":{"text":"6","type":"bibr","rid":"b6","data":[{"name":"text","data":"6"}]}},{"name":"text","data":"]"}]},{"name":"text","data":"测量液晶材料在微波K频段的介电常数和介电损耗。待测液晶放置在4 cm聚四氟乙烯管(内径=1.0 mm)中,并进行空白对照实验;通过旋转腔体实现不同方向的测量;电磁场强度为0.5~1.0 T,微波频率为10~30 GHz,室内温度25 ℃,湿度40%左右。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"2.5"}],"title":[{"name":"text","data":"液晶分子计算"}],"level":"2","id":"s2-5"}},{"name":"p","data":[{"name":"text","data":"本文使用分子模拟GAUSSIAN 09程序计算了所研究化合物的偶极矩。使用BLYP3(使用LYP相关函数的贝克尔三参数混合函数)和6-31 G(d,p)基础集,在优化的分子结构上以密度泛函理论(DFT)级别“在真空中”进行计算。部分液晶分子的偶极矩如"},{"name":"xref","data":{"text":"表 2","type":"table","rid":"Table2","data":[{"name":"text","data":"表 2"}]}},{"name":"text","data":"所示。"}]},{"name":"table","data":{"id":"Table2","caption":[{"lang":"zh","label":[{"name":"text","data":"表2"}],"title":[{"name":"text","data":"计算的偶极矩"},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"及其"},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":")、"},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"text","data":")和"},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"z"}]},{"name":"text","data":")分量"}]},{"lang":"en","label":[{"name":"text","data":"Table 2"}],"title":[{"name":"text","data":"Calculated dipole moment "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":" and its "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":"), "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"text","data":") and "},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"z"}]},{"name":"text","data":") components"}]}],"note":[],"table":[{"head":[[{"align":"center","data":[{"name":"text","data":"化合物"}]},{"align":"center","data":[{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"x"}]},{"name":"text","data":")/D"}]},{"align":"center","data":[{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"y"}]},{"name":"text","data":")/D"}]},{"align":"center","data":[{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"("},{"name":"italic","data":[{"name":"text","data":"z"}]},{"name":"text","data":")/D"}]},{"align":"center","data":[{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"text","data":"/D"}]}]],"body":[[{"align":"center","data":[{"name":"text","data":"A2"}]},{"align":"center","data":[{"name":"text","data":"-0.060 6"}]},{"align":"center","data":[{"name":"text","data":"-0.144 6"}]},{"align":"center","data":[{"name":"text","data":"-0.068 8"}]},{"align":"center","data":[{"name":"text","data":"0.171 3"}]}],[{"align":"center","data":[{"name":"text","data":"B"}]},{"align":"center","data":[{"name":"text","data":"0.313 1"}]},{"align":"center","data":[{"name":"text","data":"0.248 0"}]},{"align":"center","data":[{"name":"text","data":"0.086 9"}]},{"align":"center","data":[{"name":"text","data":"0.408 8"}]}],[{"align":"center","data":[{"name":"text","data":"C"}]},{"align":"center","data":[{"name":"text","data":"-1.548 0"}]},{"align":"center","data":[{"name":"text","data":"0.779 6"}]},{"align":"center","data":[{"name":"text","data":"-1.009 1"}]},{"align":"center","data":[{"name":"text","data":"2.005 6"}]}],[{"align":"center","data":[{"name":"text","data":"D"}]},{"align":"center","data":[{"name":"text","data":"-0.822 0"}]},{"align":"center","data":[{"name":"text","data":"-0.102 3"}]},{"align":"center","data":[{"name":"text","data":"-0.059 3"}]},{"align":"center","data":[{"name":"text","data":"0.830 5"}]}],[{"align":"center","data":[{"name":"text","data":"E"}]},{"align":"center","data":[{"name":"text","data":"5.787 0"}]},{"align":"center","data":[{"name":"text","data":"0.847 1"}]},{"align":"center","data":[{"name":"text","data":"-0.974 2"}]},{"align":"center","data":[{"name":"text","data":"5.930 0"}]}],[{"align":"center","data":[{"name":"text","data":"F"}]},{"align":"center","data":[{"name":"text","data":"5.539 0"}]},{"align":"center","data":[{"name":"text","data":"-0.943 1"}]},{"align":"center","data":[{"name":"text","data":"1.779 1"}]},{"align":"center","data":[{"name":"text","data":"5.894 0"}]}]],"foot":[]}]}}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3"}],"title":[{"name":"text","data":"结果与讨论"}],"level":"1","id":"s3"}},{"name":"p","data":[{"name":"text","data":"将"},{"name":"xref","data":{"text":"表 1","type":"table","rid":"Table1","data":[{"name":"text","data":"表 1"}]}},{"name":"text","data":"中不同结构的苯乙炔类液晶化合物配制的液晶组合物(MA~MF)通过矩形谐振腔微扰法测得频段10~30 GHz下的介电性能结果分别如"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"、"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"和"},{"name":"xref","data":{"text":"表 2","type":"table","rid":"Table2","data":[{"name":"text","data":"表 2"}]}},{"name":"text","data":"所示,并分析了不同取代基对液晶化合物的高频介电性能的影响作用。"}]},{"name":"fig","data":{"id":"Figure1","caption":[{"lang":"zh","label":[{"name":"text","data":"图1"}],"title":[{"name":"text","data":"液晶组合物MA~MF在不同频率下的介电各向异性比较(20 ℃)"}]},{"lang":"en","label":[{"name":"text","data":"Fig 1"}],"title":[{"name":"text","data":"Change curves of dielectric anisotropy value of liquid crystal mixtures MA~MF with frequency at 20 ℃"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576423&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576423&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576423&type=middle"}]}},{"name":"fig","data":{"id":"Figure2","caption":[{"lang":"zh","label":[{"name":"text","data":"图2"}],"title":[{"name":"text","data":"液晶组合物MA~MF在不同频率下的介电损耗比较(20 ℃)"}]},{"lang":"en","label":[{"name":"text","data":"Fig 2"}],"title":[{"name":"text","data":"Change curve of dielectric loss value of liquid crystal mixtures MA~MF with frequency at 20 ℃"}]}],"subcaption":[],"note":[],"graphics":[{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576427&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576427&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576427&type=middle"}]}},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.1"}],"title":[{"name":"text","data":"不同频率下的介电各向异性"}],"level":"2","id":"s3-1"}},{"name":"p","data":[{"name":"text","data":"微波移相器用于相控阵雷达和卫星通信设备需要有高精度、高相位调制量等性能。微波相位调制量越大,微波传递效果越有利。而相位可调谐性与介质在高频下介电各向异性正相关,因此介电各向异性越高越好。"}]},{"name":"p","data":[{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"是不同结构化合物A~F在母体液晶MA中所表现出的介电各向异性曲线图。从"},{"name":"xref","data":{"text":"图 1","type":"fig","rid":"Figure1","data":[{"name":"text","data":"图 1"}]}},{"name":"text","data":"中可见:①MA表现出的介电各向异性最小,ME的介电常数最大;其主要原因可能是化合物A的分子极性最小,化合物E的分子极性最大之故;②比较不同化合物的介电各向异性,随着分子极性逐渐增大,组合物的介电各向异性逐渐提高,MB、MC介电各向异性均大于0.875,MD最低是0.9以上;而组合物ME和MF则超过0.955以上,这不仅与大极性基团-NCS有关,可能还与侧位氟取代也有关。苯环侧位引入氟原子,增大了这些化合物分子的偶极矩("},{"name":"xref","data":{"text":"表 2","type":"table","rid":"Table2","data":[{"name":"text","data":"表 2"}]}},{"name":"text","data":")和极性,导致其介电各向异性增加。③组合物ME的介电各向异性比MF的要大,可能与化合物E的分子π-电子共轭性和双折射率比化合物F的大有关。④化合物B的介电各向异性小于化合物C,化合物C在中心苯环引入一个氟原子,偶极矩增加("},{"name":"italic","data":[{"name":"text","data":"μ"}]},{"name":"sub","data":[{"name":"text","data":"C"}]},{"name":"text","data":"≈2.0 D见"},{"name":"xref","data":{"text":"表 2","type":"table","rid":"Table2","data":[{"name":"text","data":"表 2"}]}},{"name":"text","data":"),从而该化合物的极性增加,介电各向异性增大。"}]},{"name":"p","data":[{"name":"text","data":"上述结果表明,液晶化合物在微波频段下的介电各向异性与分子极性及其双折射率相关;炔类液晶化合物侧位引入氟原子,分子极性增加,介电各向异性增大,端基异硫氰基的液晶化合物因其较大的极性以及双折射率,表现出较大的介电各向异性。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.2"}],"title":[{"name":"text","data":"不同频率下的最大介电损耗"}],"level":"2","id":"s3-2"}},{"name":"p","data":[{"name":"text","data":"在交变电场中,存在因分子极化而产生的损耗。复介电常数"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"italic","data":[{"name":"text","data":"r"}]}]},{"name":"text","data":"="},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"italic","data":[{"name":"text","data":"r"}]}]},{"name":"text","data":"′-"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"italic","data":[{"name":"text","data":"r"}]}]},{"name":"text","data":"″,虚部("},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"text","data":"″)与实部("},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"text","data":"′)的比值即为介电损耗值,又称介质损耗因数。"}]},{"name":"p","data":[{"name":"text","data":"微波移相器要求液晶材料具备低介电损耗的性能,但在微波K波段(10~30 GHz)的电磁场对分子可极化作用比低频大,导致分子对波频和能量有一定吸收作用,从而造成液晶介电性能损耗。"}]},{"name":"p","data":[{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"是化合物A~F分别在母体液晶中最大介电损耗的测试结果。从"},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":"可见,①母体液晶MA或化合物A的整体最大介电损耗(tan"},{"name":"italic","data":[{"name":"text","data":"δε"}]},{"name":"sub","data":[{"name":"text","data":"r⊥A"}]},{"name":"text","data":" "},{"name":"text","data":"<"},{"name":"text","data":" 8.0×10 "},{"name":"sup","data":[{"name":"text","data":"-3"}]},{"name":"text","data":")最小,化合物F的介电损耗最大;而化合物C的介电损耗仅次于化合物F,这可能与化合物C苯环侧位氟原子较多有关;②化合物E的损耗低于化合物D,这可能与它们的双折射率差异有关。③化合物A、B、C都是高双折射率的三苯二炔类液晶化合物,尽管化合物B的损耗略大于A,但A和B的整体损耗都较低;而C的整体损耗较大,远高于化合物A和化合物B("},{"name":"xref","data":{"text":"图 2","type":"fig","rid":"Figure2","data":[{"name":"text","data":"图 2"}]}},{"name":"text","data":");这可能与化合物C分子中苯环侧位氟原子较多,使得液晶分子苯环π-电子云发生偏移,双折射率降低有关。"}]},{"name":"p","data":[{"name":"text","data":"同理,化合物E和F的结构也相似,但化合物F介电损耗最大,除18 GHz外,化合物F的介电损耗都高于1.1×10"},{"name":"sup","data":[{"name":"text","data":"-2"}]},{"name":"text","data":";可能是因为化合物E比F多一个苯环,具有较高的双折射率,故介电损耗较低。"}]},{"name":"p","data":[{"name":"text","data":"另外,化合物D的双折射率虽比化合物C小,但C在高频段的最大介电损耗偏高,整体高于9.0×10"},{"name":"sup","data":[{"name":"text","data":"-3"}]},{"name":"text","data":",而D的介电损耗相对较小;这可能与化合物D的氟原子对称取代,结构相对比较稳定有关。"}]},{"name":"p","data":[{"name":"text","data":"实验表明,影响微波K频段下的介电损耗的主要原因可能与液晶化合物的双折射率以及化合物氟原子取代的对称性有关。双折射率大的液晶化合物表现出较低的介电损耗;氟原子对称取代的液晶化合物表现出较低的介电损耗。"}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"3.3"}],"title":[{"name":"text","data":"在18 GHz下介电性能比较"}],"level":"2","id":"s3-3"}},{"name":"p","data":[{"name":"text","data":"微波器件在K波段用途广泛,在18 GHz下的介电性能尤为重要。液晶组合物在18 GHz下的介电性能如"},{"name":"xref","data":{"text":"表 3","type":"table","rid":"Table3","data":[{"name":"text","data":"表 3"}]}},{"name":"text","data":"所示。"}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"1"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576430&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576430&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576430&type=middle"}}}],"id":"yjyxs-36-7-913-E1"}}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"2"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576434&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576434&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576434&type=middle"}}}],"id":"yjyxs-36-7-913-E2"}}]},{"name":"p","data":[{"name":"dispformula","data":{"label":[{"name":"text","data":"3"}],"data":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"math","data":{"graphicsData":{"print":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576439&type=","small":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576439&type=small","big":"http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=19576439&type=middle"}}}],"id":"yjyxs-36-7-913-E3"}}]},{"name":"table","data":{"id":"Table3","caption":[{"lang":"zh","label":[{"name":"text","data":"表3"}],"title":[{"name":"text","data":"在微波18 GHz下不同液晶组合物的介电性能参数"},{"name":"sup","data":[{"name":"text","data":"*"}]},{"name":"text","data":"(20 ℃)"}]},{"lang":"en","label":[{"name":"text","data":"Table 3"}],"title":[{"name":"text","data":"Dielectric parameters of LC compositions at microwave 18 GHz at 20 ℃"}]}],"note":[{"lang":"zh","data":[{"name":"p","data":[{"name":"text","data":"*"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"//"}]},{"name":"text","data":"=parallel dielectric constant. "},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"⊥"}]},{"name":"text","data":"=vertical dielectric constant. Δ"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"text","data":"=dielectric anisotropy. tan"},{"name":"italic","data":[{"name":"text","data":"δε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"⊥"}]},{"name":"text","data":"=vertical dielectric loss (the max dielectric loss). tan"},{"name":"italic","data":[{"name":"text","data":"δε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"//"}]},{"name":"text","data":"=parallel dielectric loss,"},{"name":"italic","data":[{"name":"text","data":"τ"}]},{"name":"text","data":"=tunability,"},{"name":"italic","data":[{"name":"text","data":"η"}]},{"name":"text","data":"=quality factor,Δ"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"sub","data":[{"name":"text","data":"mw"}]},{"name":"text","data":"=birefringence in the microwave region."}]}]}],"table":[{"head":[[{"align":"center","data":[{"name":"text","data":"LCM"}]},{"align":"center","data":[{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"//"}]}]},{"align":"center","data":[{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"⊥"}]}]},{"align":"center","data":[{"name":"text","data":"Δ"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]}]},{"align":"center","data":[{"name":"text","data":"tan"},{"name":"italic","data":[{"name":"text","data":"δε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"⊥"}]}]},{"align":"center","data":[{"name":"text","data":"tan"},{"name":"italic","data":[{"name":"text","data":"δε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"sub","data":[{"name":"text","data":"//"}]}]},{"align":"center","data":[{"name":"text","data":"τ"}]},{"align":"center","data":[{"name":"text","data":"η"}]},{"align":"center","data":[{"name":"text","data":"Δ"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"sub","data":[{"name":"text","data":"mw"}]}]}]],"body":[[{"align":"center","data":[{"name":"text","data":"MA"}]},{"align":"center","data":[{"name":"text","data":"3.46"}]},{"align":"center","data":[{"name":"text","data":"2.59"}]},{"align":"center","data":[{"name":"text","data":"0.87"}]},{"align":"center","data":[{"name":"text","data":"6.58E-03"}]},{"align":"center","data":[{"name":"text","data":"2.65E-03"}]},{"align":"center","data":[{"name":"text","data":"0.252"}]},{"align":"center","data":[{"name":"text","data":"38.29"}]},{"align":"center","data":[{"name":"text","data":"0.252"}]}],[{"align":"center","data":[{"name":"text","data":"MB"}]},{"align":"center","data":[{"name":"text","data":"3.59"}]},{"align":"center","data":[{"name":"text","data":"2.67"}]},{"align":"center","data":[{"name":"text","data":"0.92"}]},{"align":"center","data":[{"name":"text","data":"6.93E-03"}]},{"align":"center","data":[{"name":"text","data":"1.97E-03"}]},{"align":"center","data":[{"name":"text","data":"0.256"}]},{"align":"center","data":[{"name":"text","data":"37.02"}]},{"align":"center","data":[{"name":"text","data":"0.261"}]}],[{"align":"center","data":[{"name":"text","data":"MC"}]},{"align":"center","data":[{"name":"text","data":"3.50"}]},{"align":"center","data":[{"name":"text","data":"2.60"}]},{"align":"center","data":[{"name":"text","data":"0.90"}]},{"align":"center","data":[{"name":"text","data":"8.84E-03"}]},{"align":"center","data":[{"name":"text","data":"2.46E-03"}]},{"align":"center","data":[{"name":"text","data":"0.257"}]},{"align":"center","data":[{"name":"text","data":"29.12"}]},{"align":"center","data":[{"name":"text","data":"0.259"}]}],[{"align":"center","data":[{"name":"text","data":"MD"}]},{"align":"center","data":[{"name":"text","data":"3.54"}]},{"align":"center","data":[{"name":"text","data":"2.60"}]},{"align":"center","data":[{"name":"text","data":"0.94"}]},{"align":"center","data":[{"name":"text","data":"7.89E-03"}]},{"align":"center","data":[{"name":"text","data":"1.95E-03"}]},{"align":"center","data":[{"name":"text","data":"0.253"}]},{"align":"center","data":[{"name":"text","data":"33.56"}]},{"align":"center","data":[{"name":"text","data":"0.268"}]}],[{"align":"center","data":[{"name":"text","data":"ME"}]},{"align":"center","data":[{"name":"text","data":"3.71"}]},{"align":"center","data":[{"name":"text","data":"2.66"}]},{"align":"center","data":[{"name":"text","data":"1.05"}]},{"align":"center","data":[{"name":"text","data":"7.75E-03"}]},{"align":"center","data":[{"name":"text","data":"2.75E-03"}]},{"align":"center","data":[{"name":"text","data":"0.282"}]},{"align":"center","data":[{"name":"text","data":"36.44"}]},{"align":"center","data":[{"name":"text","data":"0.294"}]}],[{"align":"center","data":[{"name":"text","data":"MF"}]},{"align":"center","data":[{"name":"text","data":"3.62"}]},{"align":"center","data":[{"name":"text","data":"264"}]},{"align":"center","data":[{"name":"text","data":"0.97"}]},{"align":"center","data":[{"name":"text","data":"1.06E-02"}]},{"align":"center","data":[{"name":"text","data":"5.35E-03"}]},{"align":"center","data":[{"name":"text","data":"0.269"}]},{"align":"center","data":[{"name":"text","data":"25.37"}]},{"align":"center","data":[{"name":"text","data":"0.279"}]}]],"foot":[]}]}},{"name":"p","data":[{"name":"text","data":"其中, "},{"name":"italic","data":[{"name":"text","data":"τ"}]},{"name":"text","data":"为介电可调谐性,"},{"name":"italic","data":[{"name":"text","data":"η"}]},{"name":"text","data":"为品质因数,Δ"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"sub","data":[{"name":"text","data":"mw"}]},{"name":"text","data":"为微波双折射率,Δ"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"r"}]},{"name":"text","data":"为介电各向异性,"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"r//"}]},{"name":"text","data":"为平行介电常数,"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"r⊥"}]},{"name":"text","data":"为垂直介电常数,tan"},{"name":"italic","data":[{"name":"text","data":"δε"}]},{"name":"sub","data":[{"name":"text","data":"r⊥"}]},{"name":"text","data":"为垂直介电损耗,即最大介电损耗。"}]},{"name":"p","data":[{"name":"text","data":"介电可调谐性"},{"name":"italic","data":[{"name":"text","data":"τ"}]},{"name":"text","data":"与介电常数相关。如式(1)所示,介电可调谐性与平行介电常数成反比,与介电各向异性成正比。实验数据表明,化合物B~D均是由端基烷基含氟苯乙炔类液晶化合物组成,表现出较低的平行介电常数与介电各向异性,平行介电常数小于3.6,介电各向异性均小于0.95,可调谐性也较低,在18 GHz下,小于0.26;化合物E和化合物F的平行介电常数高于3.62,介电各向异性高于0.97,同时也表现出较大的介电可调谐性,18 GHz下均大于0.26。可能是因为化合物E和化合物F为异硫氰酸酯取代的液晶化合物,这类化合物极性较大,介电常数较高,故可调谐性可能较大。"}]},{"name":"p","data":[{"name":"text","data":"品质因数与可调谐性以及最大介电损耗相关,如式(2)所示,液晶组合物可调谐性相差不大,品质因数主要与最大介电损耗负相关。化合物B的最大介电损耗较低(tan"},{"name":"italic","data":[{"name":"text","data":"δε"}]},{"name":"sub","data":[{"name":"text","data":"r⊥B"}]},{"name":"text","data":"=6.93×10"},{"name":"sup","data":[{"name":"text","data":"-3"}]},{"name":"text","data":",18 GHz),故表现出较大的品质因数("},{"name":"italic","data":[{"name":"text","data":"η"}]},{"name":"sub","data":[{"name":"text","data":"B"}]},{"name":"text","data":"=37.02,18 GHz);化合物F的最大介电损耗偏大(tan"},{"name":"italic","data":[{"name":"text","data":"δε"}]},{"name":"sub","data":[{"name":"text","data":"r⊥F"}]},{"name":"text","data":"=1.06×10"},{"name":"sup","data":[{"name":"text","data":"-2"}]},{"name":"text","data":",18 GHz),故表现出较小的品质因数("},{"name":"italic","data":[{"name":"text","data":"η"}]},{"name":"sub","data":[{"name":"text","data":"F"}]},{"name":"text","data":"=25.37,18 GHz)。"}]},{"name":"p","data":[{"name":"text","data":"高频下的双折射率与介电常数的关系如式(3)所示,介电各向异性越大,其微波下的双折射率越大("},{"name":"xref","data":{"text":"表 3","type":"table","rid":"Table3","data":[{"name":"text","data":"表 3"}]}},{"name":"text","data":")。化合物E的介电各向异性最高(Δ"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"rE"}]},{"name":"text","data":" =1.05),其双折射率也最大(Δ"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"sub","data":[{"name":"text","data":"mwE"}]},{"name":"text","data":" = 0.282);而化合物A的介电各向异性最小(Δ"},{"name":"italic","data":[{"name":"text","data":"ε"}]},{"name":"sub","data":[{"name":"text","data":"rA"}]},{"name":"text","data":"= 0.87),其双折射率也最小(Δ"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"sub","data":[{"name":"text","data":"mwA"}]},{"name":"text","data":"=0.252)。这表明液晶在微波下的双折射率变化规律与介电各向异性变化规律一致,也与分子极性相关。"}]}]}]},{"name":"sec","data":[{"name":"sectitle","data":{"label":[{"name":"text","data":"4"}],"title":[{"name":"text","data":"结论"}],"level":"1","id":"s4"}},{"name":"p","data":[{"name":"text","data":"本文采用矩形谐振腔微扰法测试了6种液晶组合物在微波K频段下介电性能,探讨了含氟炔类化合物对液晶组合物在微波(10 ~ 30 GHz)频段的介电性能影响。实验结果表明:①侧位含氟苯乙炔类(化合物B~D)以及端基-NCS的苯乙炔类(化合物E、F)液晶化合物因极性较强,表现出较高的介电各向异性和介电可调制性;②三苯二炔类液晶化合物(化合物A~C)、含氟三苯乙炔(化合物D)以及端基异硫氰基含氟三苯乙炔(化合物E)因具有较高的双折射率,表现出较低的介电损耗以及较高的品质因数;而端基异硫氰基含氟二苯乙炔类液晶化合物(化合物F)表现出较高的介电损耗和较低的品质因数。为进一步设计合成新型微波用液晶分子和研究微波用液晶介质性能积累了实验素材。"}]}]}],"footnote":[],"reflist":{"title":[{"name":"text","data":"参考文献"}],"data":[{"id":"b1","label":"1","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"J GRINBERG"},{"name":"text","data":" , "},{"name":"text","data":"W P BLEHA"},{"name":"text","data":" , "},{"name":"text","data":"A D JACOBSON"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Photoactivated birefringent liquid-crystal light valve for color symbology display"},{"name":"text","data":" . "},{"name":"text","data":"IEEE Transactions on Electron Devices"},{"name":"text","data":" , "},{"name":"text","data":"1975"},{"name":"text","data":" . "},{"name":"text","data":"22"},{"name":"text","data":" ( "},{"name":"text","data":"9"},{"name":"text","data":" ): "},{"name":"text","data":"775"},{"name":"text","data":" - "},{"name":"text","data":"783"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1109/T-ED.1975.18218"}],"href":"http://doi.org/10.1109/T-ED.1975.18218"}},{"name":"text","data":"."}],"title":"Photoactivated birefringent liquid-crystal light valve for color symbology display"}]},{"id":"b2","label":"2","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"T AJITO"},{"name":"text","data":" , "},{"name":"text","data":"T OBI"},{"name":"text","data":" , "},{"name":"text","data":"M YAMAGUCHI"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Multiprimary color display for liquid crystal display projectors using diffraction grating"},{"name":"text","data":" . "},{"name":"text","data":"Optical Engineering"},{"name":"text","data":" , "},{"name":"text","data":"1999"},{"name":"text","data":" . "},{"name":"text","data":"38"},{"name":"text","data":" ( "},{"name":"text","data":"11"},{"name":"text","data":" ): "},{"name":"text","data":"1883"},{"name":"text","data":" - "},{"name":"text","data":"1888"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1117/1.602276"}],"href":"http://doi.org/10.1117/1.602276"}},{"name":"text","data":"."}],"title":"Multiprimary color display for liquid crystal display projectors using diffraction grating"}]},{"id":"b3","label":"3","citation":[{"lang":"en","text":[{"name":"p","data":[{"name":"text","data":"LIJIMA A, HAIDA M, ISHIKAWA N, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Head mounted goggle system with liquid crystal display for evaluation of eye tracking functions on neurological disease patients[C]"},{"name":"text","data":"//"},{"name":"italic","data":[{"name":"text","data":"Proceedings of the"}]},{"name":"text","data":" 25"},{"name":"italic","data":[{"name":"text","data":"th Annual International Conference of the IEEE Engineering in Medicine and Biology Society"}]},{"name":"text","data":". Cancun, Mexico: IEEE, 2003."}]}]}]},{"id":"b4","label":"4","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"Z B GE"},{"name":"text","data":" , "},{"name":"text","data":"S T WU"},{"name":"text","data":" , "},{"name":"text","data":"S H LEE"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Wide-view and sunlight readable transflective liquid-crystal display for mobile applications"},{"name":"text","data":" . "},{"name":"text","data":"Optics Letters"},{"name":"text","data":" , "},{"name":"text","data":"2008"},{"name":"text","data":" . "},{"name":"text","data":"33"},{"name":"text","data":" ( "},{"name":"text","data":"22"},{"name":"text","data":" ): "},{"name":"text","data":"2623"},{"name":"text","data":" - "},{"name":"text","data":"2625"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1364/OL.33.002623"}],"href":"http://doi.org/10.1364/OL.33.002623"}},{"name":"text","data":"."}],"title":"Wide-view and sunlight readable transflective liquid-crystal display for mobile applications"}]},{"id":"b5","label":"5","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":" GOTODAH"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"A multilayer liquid crystal display for autostereoscopic 3D viewing"},{"name":"text","data":" . "},{"name":"text","data":"Proceedings of the SPIE"},{"name":"text","data":" , "},{"name":"text","data":"2010"},{"name":"text","data":" . "},{"name":"text","data":"7524"},{"name":"text","data":" "},{"name":"text","data":"75240P"},{"name":"text","data":" "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1117/12.840286"}],"href":"http://doi.org/10.1117/12.840286"}},{"name":"text","data":"."}],"title":"A multilayer liquid crystal display for autostereoscopic 3D viewing"}]},{"id":"b6","label":"6","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"C Y YU"},{"name":"text","data":" , "},{"name":"text","data":"E LI"},{"name":"text","data":" , "},{"name":"text","data":"Z Y ZHANG"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Broadband complex permittivity measurements of nematic liquid crystals based on cavity perturbation method"},{"name":"text","data":" . "},{"name":"text","data":"Liquid Crystals"},{"name":"text","data":" , "},{"name":"text","data":"2020"},{"name":"text","data":" . "},{"name":"text","data":"47"},{"name":"text","data":" ( "},{"name":"text","data":"1"},{"name":"text","data":" ): "},{"name":"text","data":"89"},{"name":"text","data":" - "},{"name":"text","data":"98"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1080/02678292.2019.1630488"}],"href":"http://doi.org/10.1080/02678292.2019.1630488"}},{"name":"text","data":"."}],"title":"Broadband complex permittivity measurements of nematic liquid crystals based on cavity perturbation method"}]},{"id":"b7","label":"7","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":" CAMLEYR"},{"name":"text","data":" , "},{"name":"text","data":"Z CELINSKI"},{"name":"text","data":" , "},{"name":"text","data":"Y GARBOVSKIY"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Liquid crystals for signal processing applications in the microwave and millimeter wave frequency ranges"},{"name":"text","data":" . "},{"name":"text","data":"Liquid Crystals Reviews"},{"name":"text","data":" , "},{"name":"text","data":"2018"},{"name":"text","data":" . "},{"name":"text","data":"6"},{"name":"text","data":" ( "},{"name":"text","data":"1"},{"name":"text","data":" ): "},{"name":"text","data":"17"},{"name":"text","data":" - "},{"name":"text","data":"52"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1080/21680396.2018.1509385"}],"href":"http://doi.org/10.1080/21680396.2018.1509385"}},{"name":"text","data":"."}],"title":"Liquid crystals for signal processing applications in the microwave and millimeter wave frequency ranges"}]},{"id":"b8","label":"8","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"F ALIHOSSEINI"},{"name":"text","data":" , "},{"name":"text","data":"V AHMADI"},{"name":"text","data":" , "},{"name":"text","data":"A MIR"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Design and analysis of a tunable liquid crystal switch/filter with metallic nano-slits"},{"name":"text","data":" . "},{"name":"text","data":"Liquid Crystals"},{"name":"text","data":" , "},{"name":"text","data":"2015"},{"name":"text","data":" . "},{"name":"text","data":"42"},{"name":"text","data":" ( "},{"name":"text","data":"11"},{"name":"text","data":" ): "},{"name":"text","data":"1638"},{"name":"text","data":" - "},{"name":"text","data":"1642"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://www.tandfonline.com/doi/full/10.1080/02678292.2015.1082650"}],"href":"http://www.tandfonline.com/doi/full/10.1080/02678292.2015.1082650"}},{"name":"text","data":"."}],"title":"Design and analysis of a tunable liquid crystal switch/filter with metallic nano-slits"}]},{"id":"b9","label":"9","citation":[{"lang":"en","text":[{"name":"p","data":[{"name":"text","data":"LAPANIK A. "},{"name":"italic","data":[{"name":"text","data":"Liquid Crystal Systems for Microwave Applications"}]},{"name":"text","data":"[M]. 2010: 5-13."}]}]}]},{"id":"b10","label":"10","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"A LAPANIK"},{"name":"text","data":" , "},{"name":"text","data":"F GÖLDEN"},{"name":"text","data":" , "},{"name":"text","data":"S MULLER"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Highly birefringent nematic mixtures at room temperature for microwave applications"},{"name":"text","data":" . "},{"name":"text","data":"Optical Engineering"},{"name":"text","data":" , "},{"name":"text","data":"2011"},{"name":"text","data":" . "},{"name":"text","data":"50"},{"name":"text","data":" ( "},{"name":"text","data":"8"},{"name":"text","data":" ): "},{"name":"text","data":"081208"},{"name":"text","data":" "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1117/1.3564878"}],"href":"http://doi.org/10.1117/1.3564878"}},{"name":"text","data":"."}],"title":"Highly birefringent nematic mixtures at room temperature for microwave applications"}]},{"id":"b11","label":"11","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"J HERMAN"},{"name":"text","data":" , "},{"name":"text","data":"J DZIADUSZEK"},{"name":"text","data":" , "},{"name":"text","data":"R DBROWSKI"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Novel high birefringent isothiocyanates based on quaterphenyl and phenylethynyltolane molecular cores"},{"name":"text","data":" . "},{"name":"text","data":"Liquid Crystals"},{"name":"text","data":" , "},{"name":"text","data":"2013"},{"name":"text","data":" . "},{"name":"text","data":"40"},{"name":"text","data":" ( "},{"name":"text","data":"9"},{"name":"text","data":" ): "},{"name":"text","data":"1174"},{"name":"text","data":" - "},{"name":"text","data":"1182"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1080/02678292.2013.808768"}],"href":"http://doi.org/10.1080/02678292.2013.808768"}},{"name":"text","data":"."}],"title":"Novel high birefringent isothiocyanates based on quaterphenyl and phenylethynyltolane molecular cores"}]},{"id":"b12","label":"12","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"J HERMAN"},{"name":"text","data":" , "},{"name":"text","data":"P KULA"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Design of new super-high birefringent isothiocyanato bistolanes-synthesis and properties"},{"name":"text","data":" . "},{"name":"text","data":"Liquid Crystals"},{"name":"text","data":" , "},{"name":"text","data":"2017"},{"name":"text","data":" . "},{"name":"text","data":"44"},{"name":"text","data":" ( "},{"name":"text","data":"9"},{"name":"text","data":" ): "},{"name":"text","data":"1462"},{"name":"text","data":" - "},{"name":"text","data":"1467"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1080/02678292.2017.1282548"}],"href":"http://doi.org/10.1080/02678292.2017.1282548"}},{"name":"text","data":"."}],"title":"Design of new super-high birefringent isothiocyanato bistolanes-synthesis and properties"}]},{"id":"b13","label":"13","citation":[{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"R KOWERDZIEJ"},{"name":"text","data":" , "},{"name":"text","data":"M OLIFIERCZUK"},{"name":"text","data":" , "},{"name":"text","data":"J PARKA"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture"},{"name":"text","data":" . "},{"name":"text","data":"Optics Express"},{"name":"text","data":" , "},{"name":"text","data":"2018"},{"name":"text","data":" . "},{"name":"text","data":"26"},{"name":"text","data":" ( "},{"name":"text","data":"3"},{"name":"text","data":" ): "},{"name":"text","data":"2443"},{"name":"text","data":" - "},{"name":"text","data":"2452"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.1364/OE.26.002443"}],"href":"http://doi.org/10.1364/OE.26.002443"}},{"name":"text","data":"."}],"title":"Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture"}]},{"id":"b14","label":"14","citation":[{"lang":"en","text":[{"name":"p","data":[{"name":"text","data":"MICHAEL W, DAGMAR K. Liquid-crystalline medium, compounds, and high-frequency components: US, 20180105748A1[P]. 2018-04-19."}]}]}]},{"id":"b15","label":"15","citation":[{"lang":"zh","text":[{"name":"p","data":[{"name":"text","data":"陈婷. 微波移相器用液晶材料研制[D]. 武汉: 武汉轻工大学, 2019."}]}]},{"lang":"en","text":[{"name":"p","data":[{"name":"text","data":"CHEN T. Study of liquid crystal materials for microwave phase shifters[D]. Wuhan: Wuhan Polytechnic University, 2019. (in Chinese)"}]}]}]},{"id":"b16","label":"16","citation":[{"lang":"zh","text":[{"name":"p","data":[{"name":"text","data":"刘可庆. 超高双折射率液晶合成及其性能研究[D]. 武汉: 武汉轻工大学, 2014."}]}]},{"lang":"en","text":[{"name":"p","data":[{"name":"text","data":"LIU K Q. Synthesis and properties of liquid crystals with high birefringence[D]. Wuhan: Wuhan Polytechnic University, 2014. (in Chinese)"}]}]}]},{"id":"b17","label":"17","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"章 思汗"},{"name":"text","data":" , "},{"name":"text","data":"刘 可庆"},{"name":"text","data":" , "},{"name":"text","data":"张 智勇"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"含氟三苯二炔类液晶化合物合成及其性质研究"},{"name":"text","data":" . "},{"name":"text","data":"液晶与显示"},{"name":"text","data":" , "},{"name":"text","data":"2015"},{"name":"text","data":" . "},{"name":"text","data":"30"},{"name":"text","data":" ( "},{"name":"text","data":"5"},{"name":"text","data":" ): "},{"name":"text","data":"769"},{"name":"text","data":" - "},{"name":"text","data":"776"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://cjlcd.lightpublishing.cn/thesisDetails#10.3788/YJYXS20153005.0769&graphicAbstract=0"}],"href":"http://cjlcd.lightpublishing.cn/thesisDetails#10.3788/YJYXS20153005.0769&graphicAbstract=0"}},{"name":"text","data":"."}],"title":"含氟三苯二炔类液晶化合物合成及其性质研究"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"S H ZHANG"},{"name":"text","data":" , "},{"name":"text","data":"K Q LIU"},{"name":"text","data":" , "},{"name":"text","data":"Z Y ZHANG"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Synthesis and properties of fluorinated Phenylethynyltolane compounds"},{"name":"text","data":" . "},{"name":"text","data":"Chinese Journal of Liquid Crystals and Displays"},{"name":"text","data":" , "},{"name":"text","data":"2015"},{"name":"text","data":" . "},{"name":"text","data":"30"},{"name":"text","data":" ( "},{"name":"text","data":"5"},{"name":"text","data":" ): "},{"name":"text","data":"769"},{"name":"text","data":" - "},{"name":"text","data":"776"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://cjlcd.lightpublishing.cn/thesisDetails#10.3788/YJYXS20153005.0769&graphicAbstract=0"}],"href":"http://cjlcd.lightpublishing.cn/thesisDetails#10.3788/YJYXS20153005.0769&graphicAbstract=0"}},{"name":"text","data":"."}],"title":"Synthesis and properties of fluorinated Phenylethynyltolane compounds"}]},{"id":"b18","label":"18","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"孙 亮"},{"name":"text","data":" , "},{"name":"text","data":"张 智勇"},{"name":"text","data":" , "},{"name":"text","data":"游 红军"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"含氟联苯乙炔液晶化合物的合成及其低温性能"},{"name":"text","data":" . "},{"name":"text","data":"液晶与显示"},{"name":"text","data":" , "},{"name":"text","data":"2010"},{"name":"text","data":" . "},{"name":"text","data":"25"},{"name":"text","data":" ( "},{"name":"text","data":"6"},{"name":"text","data":" ): "},{"name":"text","data":"784"},{"name":"text","data":" - "},{"name":"text","data":"791"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3969/j.issn.1007-2780.2010.06.004"}],"href":"http://doi.org/10.3969/j.issn.1007-2780.2010.06.004"}},{"name":"uri","data":{"text":[{"name":"text","data":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1688947&Fpath=&graphicAbstract=0&index=-1"}],"href":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1688947&Fpath=&graphicAbstract=0&index=-1"}},{"name":"text","data":"."}],"title":"含氟联苯乙炔液晶化合物的合成及其低温性能"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"L SUN"},{"name":"text","data":" , "},{"name":"text","data":"Z Y ZHANG"},{"name":"text","data":" , "},{"name":"text","data":"H J YOU"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Synthesis and low-temperature properties of lateral difluoro-diphenyltolane compounds"},{"name":"text","data":" . "},{"name":"text","data":"Chinese Journal of Liquid Crystals and Displays"},{"name":"text","data":" , "},{"name":"text","data":"2010"},{"name":"text","data":" . "},{"name":"text","data":"25"},{"name":"text","data":" ( "},{"name":"text","data":"6"},{"name":"text","data":" ): "},{"name":"text","data":"784"},{"name":"text","data":" - "},{"name":"text","data":"791"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3969/j.issn.1007-2780.2010.06.004"}],"href":"http://doi.org/10.3969/j.issn.1007-2780.2010.06.004"}},{"name":"uri","data":{"text":[{"name":"text","data":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1688947&Fpath=&graphicAbstract=0&index=-1"}],"href":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1688947&Fpath=&graphicAbstract=0&index=-1"}},{"name":"text","data":"."}],"title":"Synthesis and low-temperature properties of lateral difluoro-diphenyltolane compounds"}]},{"id":"b19","label":"19","citation":[{"lang":"zh","text":[{"name":"p","data":[{"name":"text","data":"黄江涛. 高双折射率含氟液晶的合成与性能研究[D]. 武汉: 武汉轻工大学, 2013."}]}]},{"lang":"en","text":[{"name":"p","data":[{"name":"text","data":"HUANG J T. Study on synthesis and performance of fluorinated liquid crystal with high birefringence[D]. Wuhan: Wuhan Polytechnic University, 2013. (in Chinese)"}]}]}]},{"id":"b20","label":"20","citation":[{"lang":"zh","text":[{"name":"p","data":[{"name":"text","data":"王国华. 含氟异硫氰酸酯高双折射率液晶的合成研究[D]. 武汉: 武汉轻工大学, 2013."}]}]},{"lang":"en","text":[{"name":"p","data":[{"name":"text","data":"WANG G H. Synthesis of fluoride isothiocyanate liquid crystals with high birefringence[D]. Wuhan: Wuhan Polytechnic University, 2013. (in Chinese)"}]}]}]},{"id":"b21","label":"21","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"杨 学军"},{"name":"text","data":" , "},{"name":"text","data":"张 旺财"},{"name":"text","data":" , "},{"name":"text","data":"张 严伟"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"多卤代联苯类化合物及其制备的液晶单体"},{"name":"text","data":" . "},{"name":"text","data":"液晶与显示"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"34"},{"name":"text","data":" ( "},{"name":"text","data":"12"},{"name":"text","data":" ): "},{"name":"text","data":"1143"},{"name":"text","data":" - "},{"name":"text","data":"1147"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://cjlcd.lightpublishing.cn/thesisDetails#10.3788/YJYXS20193412.1143&graphicAbstract=0"}],"href":"http://cjlcd.lightpublishing.cn/thesisDetails#10.3788/YJYXS20193412.1143&graphicAbstract=0"}},{"name":"text","data":"."}],"title":"多卤代联苯类化合物及其制备的液晶单体"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"X J YANG"},{"name":"text","data":" , "},{"name":"text","data":"W C ZHANG"},{"name":"text","data":" , "},{"name":"text","data":"Y W ZHANG"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Polyhalogenated biphenyl compound and its liquid crystal monomer"},{"name":"text","data":" . "},{"name":"text","data":"Chinese Journal of Liquid Crystals and Displays"},{"name":"text","data":" , "},{"name":"text","data":"2019"},{"name":"text","data":" . "},{"name":"text","data":"34"},{"name":"text","data":" ( "},{"name":"text","data":"12"},{"name":"text","data":" ): "},{"name":"text","data":"1143"},{"name":"text","data":" - "},{"name":"text","data":"1147"},{"name":"text","data":" . "},{"name":"uri","data":{"text":[{"name":"text","data":"http://cjlcd.lightpublishing.cn/thesisDetails#10.3788/YJYXS20193412.1143&graphicAbstract=0"}],"href":"http://cjlcd.lightpublishing.cn/thesisDetails#10.3788/YJYXS20193412.1143&graphicAbstract=0"}},{"name":"text","data":"."}],"title":"Polyhalogenated biphenyl compound and its liquid crystal monomer"}]},{"id":"b22","label":"22","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"李 建"},{"name":"text","data":" , "},{"name":"text","data":"车 昭毅"},{"name":"text","data":" , "},{"name":"text","data":"莫 玲"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"5, 6-二氟苯并呋喃: 新的核结构用于液晶分子设计"},{"name":"text","data":" . "},{"name":"text","data":"液晶与显示"},{"name":"text","data":" , "},{"name":"text","data":"2020"},{"name":"text","data":" . "},{"name":"text","data":"35"},{"name":"text","data":" ( "},{"name":"text","data":"10"},{"name":"text","data":" ): "},{"name":"text","data":"1000"},{"name":"text","data":" - "},{"name":"text","data":"1005"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.37188/YJYXS20203510.1000"}],"href":"http://doi.org/10.37188/YJYXS20203510.1000"}},{"name":"uri","data":{"text":[{"name":"text","data":"http://cjlcd.lightpublishing.cn/thesisDetails#10.37188/YJYXS20203510.1000&graphicAbstract=0"}],"href":"http://cjlcd.lightpublishing.cn/thesisDetails#10.37188/YJYXS20203510.1000&graphicAbstract=0"}},{"name":"text","data":"."}],"title":"5, 6-二氟苯并呋喃: 新的核结构用于液晶分子设计"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"J LI"},{"name":"text","data":" , "},{"name":"text","data":"Z Y CHE"},{"name":"text","data":" , "},{"name":"text","data":"L MO"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"5, 6-difluoro-benzofuran: a new core structure for the design of liquid crystal compound"},{"name":"text","data":" . "},{"name":"text","data":"Chinese Journal of Liquid Crystals and Displays"},{"name":"text","data":" , "},{"name":"text","data":"2020"},{"name":"text","data":" . "},{"name":"text","data":"35"},{"name":"text","data":" ( "},{"name":"text","data":"10"},{"name":"text","data":" ): "},{"name":"text","data":"1000"},{"name":"text","data":" - "},{"name":"text","data":"1005"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.37188/YJYXS20203510.1000"}],"href":"http://doi.org/10.37188/YJYXS20203510.1000"}},{"name":"uri","data":{"text":[{"name":"text","data":"http://cjlcd.lightpublishing.cn/thesisDetails#10.37188/YJYXS20203510.1000&graphicAbstract=0"}],"href":"http://cjlcd.lightpublishing.cn/thesisDetails#10.37188/YJYXS20203510.1000&graphicAbstract=0"}},{"name":"text","data":"."}],"title":"5, 6-difluoro-benzofuran: a new core structure for the design of liquid crystal compound"}]},{"id":"b23","label":"23","citation":[{"lang":"zh","text":[{"name":"p","data":[{"name":"text","data":"任占冬, 张智勇, 朱玉婵, 等. 一种提纯液晶材料的方法: 中国, 101760203A[P]. 2010-06-30."}]}]},{"lang":"en","text":[{"name":"p","data":[{"name":"text","data":"REN Z D, ZHANG Z Y, ZHU Y C, "},{"name":"italic","data":[{"name":"text","data":"et al"}]},{"name":"text","data":". Method for purifying liquid crystal material: CN, 101760203A[P]. 2010-06-30. (in Chinese)"}]}]}]},{"id":"b24","label":"24","citation":[{"lang":"zh","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"张 然"},{"name":"text","data":" , "},{"name":"text","data":"彭 增辉"},{"name":"text","data":" , "},{"name":"text","data":"刘 永刚"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"高Δ"},{"name":"italic","data":[{"name":"text","data":"n"}]},{"name":"text","data":"低粘度液晶的合成及性能研究"},{"name":"text","data":" . "},{"name":"text","data":"液晶与显示"},{"name":"text","data":" , "},{"name":"text","data":"2009"},{"name":"text","data":" . "},{"name":"text","data":"24"},{"name":"text","data":" ( "},{"name":"text","data":"6"},{"name":"text","data":" ): "},{"name":"text","data":"789"},{"name":"text","data":" - "},{"name":"text","data":"793"},{"name":"text","data":" . "},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3969/j.issn.1007-2780.2009.06.003"}],"href":"http://doi.org/10.3969/j.issn.1007-2780.2009.06.003"}},{"name":"uri","data":{"text":[{"name":"text","data":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1687717&Fpath=&graphicAbstract=0&index=-1"}],"href":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1687717&Fpath=&graphicAbstract=0&index=-1"}},{"name":"text","data":"."}],"title":"高Δn低粘度液晶的合成及性能研究"},{"lang":"en","text":[{"name":"text","data":" "},{"name":"text","data":" "},{"name":"text","data":"R ZHANG"},{"name":"text","data":" , "},{"name":"text","data":"Z H PENG"},{"name":"text","data":" , "},{"name":"text","data":"Y G LIU"},{"name":"text","data":" , "},{"name":"text","data":"等"},{"name":"text","data":" "},{"name":"text","data":" . "},{"name":"text","data":"Synthesis and properties of high birefringence and low viscosity liquid crystal"},{"name":"text","data":" . "},{"name":"text","data":"Chinese Journal of Liquid Crystals and Displays"},{"name":"text","data":" , "},{"name":"text","data":"2009"},{"name":"text","data":" . "},{"name":"text","data":"24"},{"name":"text","data":" ( "},{"name":"text","data":"6"},{"name":"text","data":" ): "},{"name":"text","data":"789"},{"name":"text","data":" - "},{"name":"text","data":"793"},{"name":"text","data":" ."},{"name":"text","data":"DOI:"},{"name":"extlink","data":{"text":[{"name":"text","data":"10.3969/j.issn.1007-2780.2009.06.003"}],"href":"http://doi.org/10.3969/j.issn.1007-2780.2009.06.003"}},{"name":"uri","data":{"text":[{"name":"text","data":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1687717&Fpath=&graphicAbstract=0&index=-1"}],"href":"http://cjlcd.lightpublishing.cn/thesisDetails?columnId=1687717&Fpath=&graphicAbstract=0&index=-1"}},{"name":"text","data":"."}],"title":"Synthesis and properties of high birefringence and low viscosity liquid crystal"}]}]},"response":[],"contributions":[],"acknowledgements":[],"conflict":[],"supportedby":[],"articlemeta":{"doi":"10.37188/CJLCD.2021-0025","clc":[[{"name":"text","data":"O69;O621.2"}]],"dc":[],"publisherid":"yjyxs-36-7-913","citeme":[],"fundinggroup":[{"lang":"zh","text":[{"name":"text","data":"国家装发部预研基金(No.61409230701)"}]},{"lang":"en","text":[{"name":"text","data":"Supported by National Equipment Development Department Pre-research Fund Project of China(No.61409230701)"}]}],"history":{"received":"2021-03-03","revised":"2021-03-14","opub":"2021-09-08"},"copyright":{"data":[{"lang":"zh","data":[{"name":"text","data":"版权所有©《液晶与显示》编辑部2021"}],"type":"copyright"},{"lang":"en","data":[{"name":"text","data":"Copyright ©2021 Chinese Journal of Liquid Crystals and Displays. All rights reserved."}],"type":"copyright"}],"year":"2021"}},"appendix":[],"type":"research-article","ethics":[],"backSec":[],"supplementary":[],"journalTitle":"液晶与显示","issue":"7","volume":"36","originalSource":[]}