1.北京理工大学 光电学院, 北京市混合现实与先进显示技术工程研究中心, 北京 100081
2.重庆京东方显示技术有限公司, 重庆 400714
扫 描 看 全 文
WENG Le, SHI Da-wei, GUO Jian, et al. Research progress of OLED sticking image. [J]. Chinese Journal of Liquid Crystals and Displays 37(9):1140-1150(2022)
WENG Le, SHI Da-wei, GUO Jian, et al. Research progress of OLED sticking image. [J]. Chinese Journal of Liquid Crystals and Displays 37(9):1140-1150(2022) DOI: 10.37188/CJLCD.2022-0128.
有机发光二极管(Organic Light-Emitting Diode, OLED)显示技术通过有机材料的自主发光,展现出广色域、低能耗、柔性化等优点,是最具发展潜力的显示技术之一。目前OLED显示仍存在寿命短、亮度低和可靠性差等问题,这些问题最终导致残像现象的发生,本文旨在分析和总结OLED显示残像问题的研究进展和相关解决方案。首先,阐释了OLED显示残像问题与OLED材料寿命和薄膜晶体管(Thin Film Transistor, TFT)稳定性的关联,关注柔性与刚性OLED器件的结构差异,进一步总结、归纳了OLED残像的产生机制。其次,针对不同的残像诱发原因,讨论了缓解和补偿OLED显示残像的方法,包括提升OLED有机材料寿命和TFT阈值电压稳定性、外部补偿电路等方案。最后,对OLED显示残像问题的进一步解决办法进行了展望。
Organic Light-Emitting Diode (OLED) display technology exhibits the advantages of wide color gamut, low energy consumption and flexibility through the self-luminescence of organic materials, and is one of the most promising display technologies. At present, OLED displays still have problems such as short lifetime, low brightness and poor reliability. These problems eventually lead to the occurrence of sticking image. This paper aims to analyze and summarize the research progress and related solutions of OLED sticking image. Firstly, the relationship between OLED sticking image problem and OLED material lifetime as well as thin film transistor (TFT) stability is explained, focusing on the structural difference between flexible and rigid OLED devices, and the principle of OLED sticking image is further generalized. Secondly, for different causes of sticking image, the methods to alleviate and compensate OLED display sticking image are discussed, including schemes to improve the lifetime of organic materials, threshold voltage stability of TFT, and external compensation circuits. Finally, the further solution to the OLED display sticking image is prospected.
有机发光二极管残像薄膜晶体管柔性显示
OLEDsticking imageTFTflexible display
TAO J S, WANG R P, YU H, et al. Highly transparent, highly thermally stable nanocellulose/polymer hybrid substrates for flexible OLED devices [J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9701-9709. doi: 10.1021/acsami.0c01048http://dx.doi.org/10.1021/acsami.0c01048
KHAN Y, OSTFELD A E, LOCHNER C M, et al. Monitoring of vital signs with flexible and wearable medical devices [J]. Advanced Materials, 2016, 28(22): 4373-4395. doi: 10.1002/adma.201504366http://dx.doi.org/10.1002/adma.201504366
DENG T, SUN W, ZHANG R Q, et al. Research on interface design of full windshield head-up display based on user experience [C]//Proceedings of AHFE 2018 International Conferences on Usability & User Experience and Human Factors and Assistive Technology. Orlando: Springer, 2018: 166-173. doi: 10.1007/978-3-319-94947-5_16http://dx.doi.org/10.1007/978-3-319-94947-5_16
JEON Y, NOH I, SEO Y C, et al. Parallel-stacked flexible organic light-emitting diodes for wearable photodynamic therapeutics and color-tunable optoelectronics [J]. ACS Nano, 2020, 14(11): 15688-15699. doi: 10.1021/acsnano.0c06649http://dx.doi.org/10.1021/acsnano.0c06649
VOGEL U, RICHTER B, WARTENBERG P, et al. OLED microdisplays in near-to-eye applications: challenges and solutions [C]//Proceedings of SPIE 10335, Digital Optical Technologies 2017. Munich: SPIE, 2017: 1033503. doi: 10.1117/12.2270224http://dx.doi.org/10.1117/12.2270224
CHO D H, KWON O E, PARK Y S, et al. Flexible integrated OLED substrates prepared by printing and plating process [J]. Organic Electronics, 2017, 50: 170-176. doi: 10.1016/j.orgel.2017.07.041http://dx.doi.org/10.1016/j.orgel.2017.07.041
HAN J M, SUK H J. Do users perceive the same image differently? Comparison of OLED and LCD in mobile HMDs and smartphones [J]. Journal of Information Display, 2019, 20(1): 31-38. doi: 10.1080/15980316.2019.1567612http://dx.doi.org/10.1080/15980316.2019.1567612
CHIU C H, CHIEN C H, KUO Y X, et al. To enhance light extraction of OLED devices by multi-optic layers including a micro lens array [C]//Proceedings of SPIE 9183, Organic Light Emitting Materials and Devices XVIII. San Diego: SPIE, 2014: 91832C. doi: 10.1117/12.2061338http://dx.doi.org/10.1117/12.2061338
SODHANI A, KANDPAL K. Design of threshold voltage insensitive pixel driver circuitry using a-IGZO TFT for AMOLED displays [J]. Microelectronics Journal, 2020, 101: 104819. doi: 10.1016/j.mejo.2020.104819http://dx.doi.org/10.1016/j.mejo.2020.104819
KIM J H, PARK J W. Intrinsically stretchable organic light-emitting diodes [J]. Science Advances, 2021, 7(9): eabd9715. doi: 10.1126/sciadv.abd9715http://dx.doi.org/10.1126/sciadv.abd9715
JANG H J, LEE J Y, KIM J, et al. Progress of display performances: AR, VR, QLED, and OLED [J]. Journal of Information Display, 2020, 21(1): 1-9. doi: 10.1080/15980316.2020.1720835http://dx.doi.org/10.1080/15980316.2020.1720835
HSIANG E L, YANG Z Y, YANG Q, et al. Prospects and challenges of mini-LED, OLED, and micro-LED displays [J]. Journal of the Society for Information Display, 2021, 29(6): 446-465. doi: 10.1002/jsid.1058http://dx.doi.org/10.1002/jsid.1058
JIANG X T, XU C H. A unified OLED aging model combining three modeling approaches for extending AMOLED lifetime [J]. Journal of the Society for Information Display, 2021, 29(10): 768-784. doi: 10.1002/jsid.1064http://dx.doi.org/10.1002/jsid.1064
NAM S, KIM J W, BAE H J, et al. Improved efficiency and lifetime of deep-blue hyperfluorescent organic light-emitting diode using Pt(II) complex as phosphorescent sensitizer [J]. Advanced Science, 2021, 8(16): 2100586. doi: 10.1002/advs.202100586http://dx.doi.org/10.1002/advs.202100586
HWANG H W, HONG S, HWANG S S, et al. Analysis of recoverable residual image characteristics of flexible organic light-emitting diode displays using polyimide substrates [J]. IEEE Electron Device Letters, 2019, 40(7): 1108-1111. doi: 10.1109/led.2019.2914142http://dx.doi.org/10.1109/led.2019.2914142
SCHOLZ S, KONDAKOV D, LÜSSEM B, et al. Degradation mechanisms and reactions in organic light-emitting devices [J]. Chemical Reviews, 2015, 115(16): 8449-8503. doi: 10.1021/cr400704vhttp://dx.doi.org/10.1021/cr400704v
WONG M Y, ZYSMAN-COLMAN E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes [J]. Advanced Materials, 2017, 29(2): 1605444. doi: 10.1002/adma.201605444http://dx.doi.org/10.1002/adma.201605444
JEON S O, LEE K H, KIM J S, et al. High-efficiency, long-lifetime deep-blue organic light-emitting diodes [J]. Nature Photonics, 2021, 15(3): 208-215. doi: 10.1038/s41566-021-00763-5http://dx.doi.org/10.1038/s41566-021-00763-5
CHAN C Y, TANAKA M, LEE Y T, et al. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission [J]. Nature Photonics, 2021, 15(3): 203-205. doi: 10.1038/s41566-020-00745-zhttp://dx.doi.org/10.1038/s41566-020-00745-z
LIU J J, LI Y L, WANG S L, et al. Long-lasting and efficient inverted pure blue organic light-emitting diodes by inserting an ultrathin aluminum interlayer [J]. Journal of Alloys and Compounds, 2020, 814: 152299. doi: 10.1016/j.jallcom.2019.152299http://dx.doi.org/10.1016/j.jallcom.2019.152299
LEE J H, PARK S G, HAN S M, et al. New PMOS LTPS–TFT pixel for AMOLED to suppress the hysteresis effect on OLED current by employing a reset voltage driving [J]. Solid-State Electronics, 2008, 52(3): 462-466. doi: 10.1016/j.sse.2007.10.030http://dx.doi.org/10.1016/j.sse.2007.10.030
HA T J, CHO W J, CHUNG H B, et al. A comparison of photo-induced hysteresis between hydrogenated amorphous silicon and amorphous IGZO thin-film transistors [J]. Journal of Nanoscience and Nanotechnology, 2015, 15(9): 6695-6698. doi: 10.1166/jnn.2015.10504http://dx.doi.org/10.1166/jnn.2015.10504
KIM H, PARK J, SONG J, et al. Effects of channel doping on flexible LTPS TFTs: density of state, generation lifetime, and image sticking [J]. SID Symposium Digest of Technical Papers, 2020, 51(1): 1383-1385. doi: 10.1002/sdtp.14143http://dx.doi.org/10.1002/sdtp.14143
KAO S C, LI L J, HSIEH M C, et al. The challenges of flexible OLED display development [J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 1034-1037. doi: 10.1002/sdtp.11812http://dx.doi.org/10.1002/sdtp.11812
KIM H, PARK J, BAK S, et al. Effects of polyimide curing on image sticking behaviors of flexible displays [J]. Scientific Reports, 2021, 11(1): 21805. doi: 10.1038/s41598-021-01364-6http://dx.doi.org/10.1038/s41598-021-01364-6
KIM H, PARK J, KHIM T, et al. Threshold voltage instability and polyimide charging effects of LTPS TFTs for flexible displays [J]. Scientific Reports, 2021, 11(1): 8387. doi: 10.1038/s41598-021-87950-0http://dx.doi.org/10.1038/s41598-021-87950-0
KIM J, KIM H, BAEK M, et al. Vt behaviors of LTPS-TFT fabricated on PI substrate for flexible applications [J]. SID Symposium Digest of Technical Papers, 2017, 48(1): 1773-1776. doi: 10.1002/sdtp.12021http://dx.doi.org/10.1002/sdtp.12021
LAAPERI A. OLED lifetime issues from a mobile-phone-industry point of view [J]. Journal of the Society for Information Display, 2008, 16(11): 1125-1130. doi: 10.1889/jsid16.11.1125http://dx.doi.org/10.1889/jsid16.11.1125
CHESTERMAN F, PIEPERS B, KIMPE T, et al. Impact of long-term stress on the light output of a WRGB AMOLED display [J]. Journal of Display Technology, 2016, 12(12): 1672-1680. doi: 10.1109/jdt.2016.2615871http://dx.doi.org/10.1109/jdt.2016.2615871
ZHAO Z F, WANG L D, ZHAN G, et al. Efficient rare earth cerium(Ⅲ) complex with nanosecond d-f emission for blue organic light-emitting diodes [J]. National Science Review, 2021, 8(2): nwaa193. doi: 10.1093/nsr/nwaa193http://dx.doi.org/10.1093/nsr/nwaa193
LIU Z J, ZHANG S W, ZHANG M, et al. Highly efficient phosphorescent blue-emitting [3+2+1] coordinated Iridium (III) complex for OLED application [J]. Frontiers in Chemistry, 2021, 9: 758357. doi: 10.3389/fchem.2021.758357http://dx.doi.org/10.3389/fchem.2021.758357
RODELLA F, SAXENA R, BAGNICH S, et al. Low efficiency roll-off blue TADF OLEDs employing a novel acridine-pyrimidine based high triplet energy host [J]. Journal of Materials Chemistry C, 2021, 9(48): 17471-17482. doi: 10.1039/d1tc03598chttp://dx.doi.org/10.1039/d1tc03598c
YAN S Y, TIAN W L, CHEN H, et al. Deep blue layered lead perovskite light-emitting diode [J]. Advanced Optical Materials, 2021, 9(4): 2001709. doi: 10.1002/adom.202001709http://dx.doi.org/10.1002/adom.202001709
VOLKERT P, JIANG X T, XU C H. Characterization and compensation of OLED aging in a digital AMOLED system [J]. Journal of the Society for Information Display, 2015, 23(12): 570-579. doi: 10.1002/jsid.401http://dx.doi.org/10.1002/jsid.401
SATOSHI S, TAKUYA H, ANNA O, et al. Fluorescent OLED achieving external quantum efficiency over 20% and longer lifetime than phosphorescent OLED [J]. SID International Symposium: Digest of Technology Papers, 2019, 50(1): 42-45. doi: 10.1002/sdtp.12851http://dx.doi.org/10.1002/sdtp.12851
KRUJATZ F, HILD O R, FEHSE K, et al. Exploiting the potential of OLED-based photo-organic sensors for biotechnological applications [J]. Chemical Sciences Journal, 2016, 7(3): 1000134. doi: 10.4172/2150-3494.1000134http://dx.doi.org/10.4172/2150-3494.1000134
LI H H, TAO Y, CHEN R F, et al. Cost-effective synthesis of carbazole/triphenylsilyl host materials with multiple σ-π conjugation for blue phosphorescent organic light-emitting diodes [J]. Dyes and Pigments, 2018, 151: 187-193. doi: 10.1016/j.dyepig.2017.12.055http://dx.doi.org/10.1016/j.dyepig.2017.12.055
NEGI S, MITTAL P, KUMAR B. In-depth analysis of structures, materials, models, parameters, and applications of organic light-emitting diodes [J]. Journal of Electronic Materials, 2020, 49(8): 4610-4636. doi: 10.1007/s11664-020-08178-8http://dx.doi.org/10.1007/s11664-020-08178-8
KIM B K, KIM O, CHUNG H J, et al. Recoverable residual image induced by hysteresis of thin film transistors in active matrix organic light emitting diode displays [J]. Japanese Journal of Applied Physics, 2004, 43(4A): L482-L485. doi: 10.1143/jjap.43.l482http://dx.doi.org/10.1143/jjap.43.l482
WON D Y, KIM H M, NGUYEN M C, et al. Residual image suppression through annealing process of amorphous indium gallium zinc oxide thin film transistor for plastic organic light-emitting diode display [J]. Journal of Nanoscience and Nanotechnology, 2020, 20(11): 6877-6883. doi: 10.1166/jnn.2020.18807http://dx.doi.org/10.1166/jnn.2020.18807
PENG C, YANG S B, PAN C C, et al. Effect of two-step annealing on high stability of a-IGZO thin-film transistor [J]. IEEE Transactions on Electron Devices, 2020, 67(10): 4262-4268. doi: 10.1109/ted.2020.3017718http://dx.doi.org/10.1109/ted.2020.3017718
KIM S, KIM H, KIM K, et al. Improvement of negative bias temperature instability of LTPS TFTs by high pressure H2O annealing [J]. Microelectronics Reliability, 2021, 116: 113963. doi: 10.1016/j.microrel.2020.113963http://dx.doi.org/10.1016/j.microrel.2020.113963
LEE H, LEE S, KIM Y, et al. Improvement of stability and performance of amorphous indium gallium zinc oxide thin film transistor by zinc-tin-oxide spray coating [J]. IEEE Electron Device Letters, 2020, 41(10): 1520-1523. doi: 10.1109/led.2020.3018750http://dx.doi.org/10.1109/led.2020.3018750
SHI L, WANG J F, ZHANG Y. Synergistic improvement of device performance and bias stress stability of IGZO TFT via back-channel graded nitrogen doping [J]. Materials Letters, 2021, 305: 130749. doi: 10.1016/j.matlet.2021.130749http://dx.doi.org/10.1016/j.matlet.2021.130749
KINOSHITA T, ISHIYAMA Y, FUJIMORI T, et al. Requirement of a polyimide substrate to achieve high thin-film-transistor reliability [J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 888-891. doi: 10.1002/sdtp.12242http://dx.doi.org/10.1002/sdtp.12242
HONG S, HWANG H W, HWANG S S, et al. Alleviation of recoverable residual image phenomenon of flexible organic light-emitting diode display [J]. SID Symposium Digest of Technical Papers, 2019, 50(1): 105-108. doi: 10.1002/sdtp.12866http://dx.doi.org/10.1002/sdtp.12866
WON D Y, NGUYEN M C, KIM H M, et al. Residual image reduction using electric field shield metal in plastic organic light-emitting diode display [J]. Journal of Nanoscience and Nanotechnology, 2020, 20(11): 6884-6889. doi: 10.1166/jnn.2020.18806http://dx.doi.org/10.1166/jnn.2020.18806
KIM H, PARK J, PARK J, et al. Charging compensation layer on polyimide for enhanced device stability in flexible technology [J]. Electronic Materials Letters, 2021, 17(3): 215-221. doi: 10.1007/s13391-021-00273-0http://dx.doi.org/10.1007/s13391-021-00273-0
KIM H J, PARK J M, BYUN C W, et al. Improved charging phenomenon with a modified barrier structure for flexible displays fabricated on polyimide substrates [J]. Electronics Letters, 2021, 57(19): 744-746. doi: 10.1049/ell2.12239http://dx.doi.org/10.1049/ell2.12239
SONG E, NAM H. Novel voltage programming n-channel TFT pixel circuit for low power and high performance AMOLED displays [J]. Display, 2014, 35(3): 118-125. doi: 10.1016/j.displa.2014.04.002http://dx.doi.org/10.1016/j.displa.2014.04.002
XIA X H, WU W J, SONG X F, et al. High-speed low-power voltage-programmed driving scheme for AMOLED displays [J]. Journal of Semiconductors, 2015, 36(12): 125005. doi: 10.1088/1674-4926/36/12/125005http://dx.doi.org/10.1088/1674-4926/36/12/125005
ZHANG L Q, LING W X, HAN B X, et al. A high accuracy 5T2C compensation circuit used in IGZO TFT_AMOLED displays [C]//Proceedings of the 2018 9th International Conference on Computer Aided Design for Thin-Film Transistors. Shenzhen: IEEE, 2018. doi: 10.1109/cad-tft.2018.8608050http://dx.doi.org/10.1109/cad-tft.2018.8608050
RJOUB A, TARAWNEH B, ALGHSOON R. Active matrix organic light emitting diode displays (AMOLED) new pixel design [J]. Microelectronic Engineering, 2019, 212: 42-52. doi: 10.1016/j.mee.2019.04.001http://dx.doi.org/10.1016/j.mee.2019.04.001
SU S Y, LIN X Y, PAI F T. A novel compensation algorithm for first frame-drop on AMOLED [J]. SID Symposium Digest of Technical Papers, 2021, 52(1): 153-156. doi: 10.1002/sdtp.14634http://dx.doi.org/10.1002/sdtp.14634
SEOL K H, KIM Y I, PARK S, et al. Simultaneous emission AC-OLED pixel circuit for extended lifetime of OLED display [J]. IEEE Journal of the Electron Devices Society, 2018, 6: 835-840. doi: 10.1109/jeds.2018.2859271http://dx.doi.org/10.1109/jeds.2018.2859271
WU W J, ZHANG L R, XU Z P, et al. A high-reliability gate driver integrated in flexible AMOLED display by IZO TFTs [J]. IEEE Transactions on Electron Devices, 2017, 64(5): 1991-1996. doi: 10.1109/ted.2016.2641448http://dx.doi.org/10.1109/ted.2016.2641448
王俊生,徐遥令,王磊,等. OLED电视残影消除和寿命提升[J]. 液晶与显示,2020,35(8):795-800. doi: 10.37188/YJYXS20203508.0795http://dx.doi.org/10.37188/YJYXS20203508.0795
WANG J S, XU Y L, WANG L, et al. Elimination of sticking image and improvement of the lifetime of OLED TV [J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(8): 795-800. (in Chinese). doi: 10.37188/YJYXS20203508.0795http://dx.doi.org/10.37188/YJYXS20203508.0795
YOO Y, LEE J, CHUN B, et al. Novel image sticking prevention method using deep learning [J]. SID Symposium Digest of Technical Papers, 2020, 51(1): 889-892. doi: 10.1002/sdtp.14013http://dx.doi.org/10.1002/sdtp.14013
0
Views
250
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution